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An algorithm for calculating the ratio of the Riccati–Bessel functions of the first 
kind for two values of the complex argument is constructed.  It allows one to construct 
a system of equations for computing the optical field inside a spherical particle by the 
Mie theory.  This algorithm removes all limitations on the values of the diffraction 
parameter and complex refractive index of the particle material. 

 
The components of the optical fields inside a spherical 

particle are described by the Mie series, each term of which 
is a functional of the angular functions and of the spherical 
Riccati–Bessel functions (RBF) of the first kind of the 
complex argument and of the third kind of the real 
argument.1,2  The summation of the infinite Mie series and 
the computations of the RBF of the third kind and of the 
angular functions are not difficult and do not limit the 
range of values of the parameters of the particle or the 
radiation in which the calculations can be performed in the 
Mie theory.  At the same time the calculation of the RBF of 
the first kind of the complex argument z = r + iμ leads to 
an overflow of the machine number 1075 when the modulus 
of the imaginary part of the complex refractive index does 
not satisfy the condition3 
 

⎥ Im(z)⎥ < 30. (1) 
 

The maximum values of the argument z are equal to 
the product of the diffraction parameter ρ = 2πaλ–1 and the 
complex refractive index m = n – iκ of the material of the 
particle.  Therefore condition (1) for ρ . 102 can be 
satisfied only when κ n 1.  This fact impeded the 
investigation of the optical fields not only inside plasma 
clusters and large metal blobs, but also inside water 
droplets if ρκ >∼ 100.  To calculate the RBF of the first kind 
of the complex argument, the method of counter recursions 
is widely used, which assumes holding the array of RBF 
values, whose dimensions are somewhat larger than the 
product of the particle diffraction parameter and the 
modulus of the complex refractive index of the particle 
material, in the main memory.  This imposes another 
restriction on the ranges of the values of ρ and m in which 
the calculations can be performed by the Mie theory.  This 
restriction can be written as 
 

ρ⎥ m⎥ < Np, (2) 
 

where Np is the maximum dimension of the complex number 

array located in the main memory of the computer.  This 
paper is aimed at eliminating restrictions (1) and (2) on the 
diffraction parameter and the complex refractive index of 
the particle material.  Following the well-known formulas1,2 
for the Mie series which describe the complex components 
of the optical field intensity at the point (r, ϕ, θ) inside a 
homogeneous spherical particle, we obtain the following 
system of equations: 
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βl(z) = 2l + 1 – αl(z); (10) 
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cotz,      ⎥ μ⎥  < 140,

( )0, i ,      μ < –140,

( )0, –i ,     μ > 140.
 (14) 

 
The limitation imposed on the modulus of the imaginary 
part of Eqs. (9) and (14) is caused, on the one hand, by the 
falling of the exponential functions of the form exp(± μ) 
outside the limits of the machine number for the quadruple 
precision of the complex number and, on the other, by 
violation of the criterion for accuracy of the calculations of 
the Bessel function written in the form of a series sum. The 
remaining notation is taken from Ref. 4. To calculate the RBF 
of the third kind, we employed forward recursion4 with 
quadruple precision.  The angular functions were computed 
using recursion relations.5 The function Fl(z1

, z
2
) is equal to 

the ratio of the RBFs of the first order ϕ
 

l(z1
) ϕ

–1

l (z
2
).  

Expressions (8) and (9) eliminate overflow of the machine 
number 1075 for arbitrary κ. The forward recursion (12) for 
small l, for which there is no risk of unstable computations, 
and Eq. (13) for large l, which allows us to determine Al(z) 

from the value of the continued fraction (11), both of which 
are employed for computing the logarithmic derivative, 
eliminate the need for holding the entire array of the results  

of calculation of Al(z) in memory.  Thus the computational 

algorithm (13)–(14) enables one to perform calculations for 
arbitrary ρ and m.  In this case the computations for large 
ρ, e.g., for ρ ∼ 106, are restricted only by limitations on 
computing time.  Relations (11)–(14) allow us to calculate 
the scattering phase function, and the cross sections and 
efficiency factors for arbitrary ρ and m.  It is possible to 
generalize the program to the case in which there are no 
restrictions on particle size. 
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