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RETRIEVING THE LASER RADIATION INTENSITY DISTRIBUTION FROM 

THE SURFACE TEMPERATURE OF A SECTIONED TARGET 

 

V.P. Aksenov, E.V. Zakharova, and Yu.N. Isaev 
 

The problem of retrieving the laser radiation intensity from the surface temperature 
over the target heated upon exposure to a laser beam is solved. Employment of a 
sectioned target allowed one to reduce the multidimensional inverse problem of heat 
conduction to a set of one-dimensional problems. Formulas for the temperature inversion 
have been obtained with different boundary conditions of heating. These formulas/ allow 
one to retrieve the thermal flux for arbitrary values of thermal and physical parameters. 
The efficiency of algorithmic implementation is studied in numerical experiments. 
 

In the study of propagation of powerful laser radiation 
through the atmosphere one faces with a problem of 
measuring its intensity distribution over the laser beam 
cross section. A possible approach to the solution of this 
problem is to retrieve the intensity distribution from 
neasureraents of the temperature field upon heating a target 
surface by the laser radiation. The advent of devices 
designed for remote sensing of the surface temperature 
fields, in particular, thermal imaging systems1,2 providing 
for high spatial and temporal resolution of measurements, 
Bakes it possible to solve this problem. In general, the 
problem of retrieving the radiation intensity distribution 
from the temperature field over a heated surface is reduced 
to the solution of the multidimensional spatiotemporal 
inverse problem of heat conduction, which represents the 
problem of conversion of the boundary conditions. If we use 
an array of one-dimensional sections (their transverse 
dimensions should be smaller than the characteristic scale of 
the Intensity distribution) as a target, the solution of such a 
spatiotemporal problem is reduced to a set of temporal 
problems (as øàëó problems as there are sections in the 
target). Prior to formulation of this one-dimensional 
problem we will consider, using the simplest situations as 
an example, how the time dependence of a heated surface 
temperature is related to time dependence of the thermal 
flux incident on it. We denote the temperature of the target 
surface as T(0, t) and the thermal flux incident on it as 
q(t). Neglecting the thermal losses we may write 
q(t) = (1 – R) I(t), where R is the reflectance and I(t) is 
the intensity of the Incident radiation. Using the heat 
budget equation for the target whose back surface is 
maintained at a constant temperature T(0), we obtain 
 

T(t) = T(0) + 
L
k q(t), L → 0; (1) 

 

for a thin heat–insulated target we have 
 

T(t) = T(0) + 
a2

kL ⌡⌠
0

t

q(τ) dτ , L → 0,  (2) 

 
where a2 and k are the thermal diffusivity and the thermal 
conductivity and L is the thickness of the target. 

It follows from Eq. (1) that the temperature of a thin 
cooled target follows the temporal behavior of the thermal 
flux. In this case we do not need to solve the inverse 
problem of heat conduction. Relation is valid for 
temperature detectors. Note, however, that Eq. (1) is 
obtained in the limit L → 0 when the absolute values of 
T(t) are close to the temperature of the target base, so that  

measurements of q(t) become practically unfeasible against 
the background noise, which accompanies remote optical 
measurements of the temperature.2 
 

 
 
FIG. 1. Time dependence of the surface temperature of 
heat-insulated, (1) and cooled (2) sections of the target 
when it is exposed to pulse of laser radiation. 
 

It follows from Eq. (2) that the heat–insulated target 
integrates q(t), and thus it is most convenient as the energy 
meter. In order to determine the temporal dependence of 
q(t), one needs to differentiate the values of the 
temperature during heating. However, for high enough 
density of the laser radiation the target without heat 
elimination runs hot and is destroyed. Therefore, the above-
described simplest target configurations cannot be used for 
practical measurements of q(t). The target should acquire an 
elevated surface temperature in order to guarantee the 
signal-to-noise ratio which is necessary for temperature 
measurements and should, at the same time, efficiently carry 
away heat to prevent its own destruction. In order to 
combine these two conditions the sections must be 
sufficiently thick. The required specifications for their 
thermal and physical, and geometric parameters will be 
formulated below. Figure 1 shows the results of 
computation of the temperature over an aluminum target 
(a2 = 9.28 cm2/s, and L = 1 cm) when it is exposed to  
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pulse of laser light for q(0) = 10 W/cm2. The distorting 
effect of heat transfer on the intensity distribution is 
apparent. The problem of compensating for this effect is 
treated below. Algorithms have been constructed and 
numerical simulations have been made to retrieve q(t) for 
various target types. 

Assuming the side surface of the section to be heat-
insulated and the intensity distribution over its front surface 
to be uniform, we may describe the process of heat transfer 
across the section by a one–dimensional heat conduction 
equation: 
 
∂T
∂t  = a2 

∂
2T
∂z2  , t > 0, 0 ≤ z ≤ L. (3) 

 
The boundary and initial conditions 
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T(z,0) = T0 (8) 
 
we use in the following combinations: Eqs. (4), (6), and 
(8) – to solve the problem of heating of the cooled target; 
Eqs. (4), (7), and (8) — to solve the problem of heating of 
the heat–insulated target. The combinations of Eqs. (5), 
(6), and (8) and of Eqs. (5), (7), and (8) will be needed to 
solve the inverse problems for the cooled target and the 
heat–insulated target, respectively. Íåãå υ is the heat 
convection coefficient, σ is the Stefan–Boltzmann constant, 
b is the emission coefficient. 

To start with, we consider the situation in which the 
temperature of the back surface of the section is maintained 
at its initial magnitude T(L, t) = T0. Solving the heat 
conduction equation with the boundary conditions (4), (6), 
and (8) for the target surface temperature we obtain: 
 

T(0,t) = T0 + 
2a2

kL ⌡⌠
0

t

q(τ) dτq(τ) × 

 

×

2 2 2
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To invert relation (9), we solve Eq. (3) with boundary 

conditions (5), (6), and (8) using the Duhamel principle4. 
In accordance with Eq. (4), calculating the derivative of the 
temperature with respect to the spatial coordinate at zero 
point we have 
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Expression (10) is valid for arbitrary values of a2, L, and of 
a variable t. However it may be simplified for certain 
relations among these variables. Using a generalized thermal 
and physical parameter F0 = a2t/L2 (the Fourier parameter) 
and the Laplace method5 we obtain from Eq. (10) for 
Fo . 1 
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For another limiting case F0 n 1 (in the approximation of 
semi–infinite body) replacing the summation in Eq. (10) by 
integration we have 
 

0

( )
( ) .

t

k dT d
q t

da t

τ τ

=

τπ − τ∫  (12) 

 
The latter expression is the solution of Abel's integral 
equation6, to which the inverse problem of heat conduction 
of a semi–infinite body is reduced. 

When the back surface of the target is heat–insulated, 
then using Eqs. (1), (4), (7), and (8) and (1), (5), (7), and 
(8), we obtain in analogy with the case of the cooled target7,8 
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If F0 . 1, expression (14) yields 
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τ

 (15) 

 
and if F0 n 1, Eq. (14) is transformed into the solution of 
Abel's equation (12), which is the particular case of 
representations (10) and (14). A significant part of the error 
in retrieval of q(t) with the help of the algorithms being 
constructed in accordance with formulas (10), (12), and 
(14) is associated with the accumulated error in calculating 

the derivative 
∂T
∂τ

  on the interval of integration [0, t]. For 

example, we have the following majorant estimate for the 
solution of Abel's equation: 
 

0

( ) ( )
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T S
q t q t t
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∂ τ ∂ τ
− ≤ −

∂τ ∂τ
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where S(t) is a smooth approximation of the temperature. It 
follows from the above unequality that the error in retrieval 
depends on the accuracy of computation of the derivative 
∂T
∂τ

  and that it increases for extended interval of integration 

[0, t]. This circumstance calls for designing the algorithms 
of retrieval based on the formulas that do not involve the 
operation of differentiation of the measured temperature.  
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Assuming that T(t) satisfies the Hölder boundary 
condition9, after integration by parts we obtain from 
Eqs. (10), (12), and (14) 
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The structure of integrand expressions in Eqs. (10), 
(12), (14), and (17)–(19) is such that integration does not 
lead to smoothing the noise component contained in the 
measured values of the temperature. Therefore direct 
computation of q(t) according to these formulas results in 
the inversion instability.6,10 That is why in algorithmic 
implementation the function T(t) was approximated by 
smoothing cubic splines6,11 which take into account the 
measurement errors. 

We simulated numerically the retrieval of the intensity 
for thermal and physical situations described by the 
boundary conditions (5)–(7). The initial temperature was 
then set to be equal to zero: T(0) = T0 = 0. We chose 
aluminum for the target material. Experimental temperature 
values were recorded at points τ1, where 
0=τ1 < τ2 < τ3 … < τn = 1 s with the resolution time Δt equal 
to that of the thermal imaging system Δt = 1/24 s. The 
starting data included a random measurement error ξi such 
that 
 

1 1( ) ,  1,  .T T n= τ + ξ�  
 

It was further assumed that ξi obeys the normal distribution 
with a zero mean and variance σ2. The function T(t) was 
approximated by a smoothing cubic spline Sn,α(t) with 
boundary conditions S′′n,α(0) = 0, S′′n,α(t = 1 s) = 0 (see 
Ref. 6) taking in account of the peculiarities of the solution 
of ill–posed problems. After substitution, the integrals in 
the right sides of Eqs. (10), (12), (14), and (17)–(19) could 
be taken analytically. Infinite summation in Eqs. (10), (14), 
(17), and (19) was limited by the given error. In any case it 
did not exceed 0.001%. 

To model the initial thermal flux in the numerical 
experiment, we chose two functions, namely, "pulse" 

 

q(t) = I0 θ(τ) {17 τ4 – 32 τ3 + 14 τ2 + 1}, 
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where I = 10 W/cm2, τ = t/t0, and t0 = 1 s and a "cap" 
 

2

0
2 2

( 0.5)
exp ,

(0.5) ( 0.5)
( )

0.5 0.5
0,       

0.5 0.5.

I

q t

⎧ ⎧ ⎫τ −⎪ ⎪
⎪ −⎨ ⎬
⎪ − τ −⎪ ⎪⎩ ⎭= ⎨
⎪ τ − ≤
⎪

τ − >⎩

 (21) 

 
Dependence (20) is shown in Figs. 2 and 3 (curve 1). 

In the absence of the errors in the measurement of the 
temperature the error in computation of q(t) is caused by 
the substitution of the function T(t) by a cubic spline Sn(t) 
and by finite summation instead of infinite. The numerical 
experiment showed that such an approximation ensures high 
enough accuracy of computation of corresponding integrals. 
Even in the case of "pulsed" dependence (20) we found that 
for Δt = 1/24 the error in retrieval of q(t) did not exceed 
2.5%. Random oscillations appear in the solution obtained 
with the use of interpolating splines when there is 
measurement noise (curves 2 in Figs. 2, and 3). They 
intensify for extended interval of integration, so that 
further analysis was conducted using the smoothing splines 
Sn,α(t). The smoothing parameter a was determined based on 
the discrepancy technique6,10. 

Figures 2 and 3 show the results of retrieving q(t) 
from model dependence (20) for 3% error in the initial data. 
Model dependence (21) resulted in more accurate retrieval 
of q{t). Figure 2 corresponds to cooled and Fig. 3 — to 
heat–insulated target. Here points indicated the results of 
retrieval after Eqs. (10) and (14) and curves — such results 
after Eqs. (17) and (19). As follows from Fig. 2 the quality 
of retrieval of q(t) depends weakly on the type of the 
boundary problem considered. The dependences obtained 
from Eqs. (17) and (19) that do not involve the operation 
of differentiation under the sign of integral, are more exact. 
For adequate comparison of the results, we computed the 
solution error "variance" for a given t from a sequence of 
the length Ns(Ns = 10) 
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Here q(t) is the exact solution, (l)
, ( )nq t
α

 is the solution 

constructed from the lth noisy temperature realization based 
on the use of the splines with the smoothing parameter α. 

The results of such a comparison for σ = 0.03 are 
presented below in Table I ("pulsed" dependence (20) was 
considered), where 
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is the rms error of the solution (nt = 25). It follows from 
the table that a value of d2t yielded by the algorithms that 
do not involve the differentiation turns to be much smaller 
than the corresponding values obtained from the algorithms 
that involve the differentiation. Comparison of the results 
of computations for "pulse" and "cap" functions shows that 
such a difference is typical of the initial segment of 
"pulsed" dependence (20). 
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FIG. 2. Retrieving model dependence (20) of q(t) from the
surface temperature of cooled target: 1) exact solution;
2) use of interpolating splines. Dots indicate the smoothed
solution on the basis of Eq. (10) and circles – of Eq. (17). 
 

 FIG. 3. Retrieving model dependence (20) of q(t) from the 
surface temperature of heat-insulated target: 
1) exact solution; 2) use of interpolating splines. 
Dots indicate the smoother solution based on Eq. (14) and 
circles — on Eq. (19). 
 

 
TABLE I. 

 

Solution for σ = 0.03 with boundary conditions 
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Error "variance" for the solution on the basis of 
the algorithms 

 

 

 

 

 

Time 

(10) (17) (14) (19) 

Δt 0.141 0.021 0.1657 0.031 

2Δt 0.038 0.003 0.05 0.004 

3Δt 0.011 0.003 0.017 0.002 

4Δt 0.004 0.003 0.007 0.002 
5Δt 0.002 0.002 0.004 0.002 

D2(qn,α) 0.0006 0.0002 0.0008 0.0002 
 

For smoother initial function (21) such a difference 
becomes less noticeable. Numerical simulations were 
conducted for targets of L = 1 cm. The Fourier parameter 
Fo was equal to 0.86 for observation time t = 1 s. It turns 
out that if the condition Fo ≤ 0.2 is satisfied one may use 
the algorithm constructed on the basis of Abel's inverse 
transformation (12) and (18). 

We have solved the problem of retrieving the laser 
beam intensity distribution from the surface temperature of 
the heated target. The solution yields the formulas for 
temperature inversion that make it possible to reconstruct 
the thermal flux passing through a one–dimensional target 
surface from the surface temperature of the target for 
various thermal and physical boundary conditions. The 
corresponding algorithms have been constructed and 

 numerical simulations conducted for the thermal fluxes 
from the temperature distributions under "noisy" conditions. 
The errors of the above algorithms have been estimated on 
the basis of typical models of the time dependence of the 
radiation intensity. Analysis shows that smoothing splines 
and algorithms that do not involve the operation of 
differentiation of the values of temperature led to more 
accurate thermal heat flux retrieval. 
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