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The application of amplitude–squeezed light obtained from 
semiconductor diode lasers with different types of negative feedback to 
sensitive absorption measurements is considered. It is shown that the sensitivity 
is limited by the type of feedback loop and by the quality of the detector. It can 
be much better than the usual shot–noise limit. For existing photodetectors, a 
factor–of–three improvement in the sensitivity can be, obtained. 

 
INTRODUCTION 

 
Amplitude squeezing is the production of light whose 

photon–number fluctuations are less than those of light in the 
Glauber coherent state. Amplitude–squeezed light exhibits 
antibunching, where the photon arrivals are more regularly 
spaced than the purely random arrivals of a coherent state. It 
also exhibits a distribution of photon number that is narrower 
than the Poisson distribution of a coherent state. These 
properties were first observed in experiments on resonance 
fluorescence.1,2 

Amplitude squeezing has also been observed in a 
semiconductor diode laser with negative feedback.3,4 In these 
experiments, the laser output was detected using a photodiode, 
and the, photodiode output was inverted, amplified, and 
applied to the laser drive current in a negative feedback loop. 
Because the laser output is detected to produce squeezing, 
squeezed light is not available for other applications. If a 
beamsplitter is used to deflect a portion of the light before 
detection, the deflected portion will actually exhibit greater 
fluctuations than if feedback is not used. The first solution is 
to replace the feedback by a high-impedance constant-current 
laser power supply. This technique has been demonstrated to 
produce squeezing at high frequencies of 350—450 MHz, (Ref. 
5) but it is difficult to implement at low frequencies because 
of the so–called "1/f" noise processes. 

The second potential solution to the problem of using the 
squeezed light generated by negative feedback is to place an 
absorber between the laser and the detector and use the 
squeezed light for measurement of absorption. This possibility 
is analyzed in this paper and found to have no advantage over 
using coherent light. 

The third solution to the problem is to use a quantum 
nondemolition measurement of photon number in the 
feedback loop.6–8 In this case most of the light is available 
for making absorption measurements. In the most commonly 
discussed approach, the laser output is passed through a 
nonlinear Kerr medium. Such a measurement has been 
demonstrated experimentally,9 although the sensitivity 
which was achieved in this first experiment was insufficient. 

In this paper, we consider the use of amplitude-
squeezed light for making very sensitive absorption 
measurements. The application is absorption spectroscopy of 
very weak lines. We show that the sensitivity is limited by 
the quality of the detector and can be much better than the 
usual shot–noise limit. 

AMPLITUDE SQUEEZING 
 

We analyze laser operation based on the geometry of 
Fig. 1. Light from the laser is detected by the photodiode. The 
photocurrent consists of a deterministic component and a 
random noise contribution. In quantum optics, the noise 
contribution is related to statistical properties of the light.10 In 
the semiclassical interpretation that will be used here, the 
noise is added within the photodiode; it is the shot noise in 
the photodiode current. The photodiode output is inverted and 
combined with a bias current. The amplified result is used as 
the laser drive current. 

 

 
 

FIG. 1. Schematic diagram of feedback–generated optical 
squeezing configuration. 
 

The number of electrons produced by the photodiode 
within the Nyquist interval of the system can be expressed as 
 
nd = ηd – nn, (1) 
 
where ηd is the quantum efficiency of the detector, m1 is the 
average number of photons in the Nyquist interval, and nn is 
the number of noise electrons in a particular interval. The 
quantity nn is a zero–mean random variable with variance 
given by 
 
σn
2 = 〈nd〉, (2) 

 
which implies the ideal laser case. 

The number of laser photons is given by 
 
m1 = η1 G(nb – nd),  (3) 
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where η1 is the differential quantum efficiency of the laser, G 
is the amplifier gain, and nb is the number of electrons per 
Nyquist interval in the bias current. 

Substituting Eq. (3) into Eq. (1) and solving for nd 
produces 
 

,  (4)

 
 

The mean value is easily found to be 
 

. (5)

 
 

The variance is given by 
 

. (6)

 
 

which is less than the corresponding Poisson variance by the 
factor (1 + η1 ηd G)–2. 

From Eq. (6), it is clear that we would like to operate 

with very large gain. In this case, we have  and 

 The noise can be very small. The 

corresponding relation for the open–loop, coherent–state cases
 

are  and .
 

 
INTRA–LOOP MEASUREMENT 

 
We consider the case in which a weakly absorbing 

material is placed between the laser and the detector. The 
photodetector output becomes 
 

, (7)

 
 

where δ is the absorption of the material. We are interested in 
making a very sensitive measurement of very small differences 
in absorption. We can therefore assume, δ is small and expand 
Eq. (7) in a Taylor series. Keeping only the first two terms 
 

. (8)

 
 

To construct an estimator of the absorption from the 
measured photocount, we set nn to be equal zero in Eq. (8) 
and solve for δ. This suggests that we estimate the 
absorption by 
 

. (9)

 
 

The mean value of this estimator is the desired value of δ. The 
variance is 
 

, (10)

 

which is approximately 1/nb for large gain and small 
absorption. 

For comparison, consider the open–loop case. Here the 
appropriate estimator is 
 

. (11)

 
 

The variance in this case is  
 

, (12)

 
 

which approaches for small values of δ. At first glance it 
appears that the open–loop configuration can achieve 
unlimited performance by using large enough gain. In practice, 
the laser power increases with gain in this case and limits the 
gain that can be used. For a more reasonable comparison of 
these two cases it should be noted that η1 ηd G nb is < nd > in 
the open loop case. In the closed loop case with high gain 
< nd > ≈ nb. Therefore, the open–loop and closed–loop 
configurations are equivalent with 
 

  (13)
 

 

in either case. 
 

EXTERNAL MEASUREMENT 
 

To make a measurement of the absorption of a material 
placed outside of the loop, we must consider a quantum 
nondemolition measurement. For an ideal nondemolition 
measurement, the statistics of the output photons are found in 
the same way as the statistics of the photoelectrons in 
Section II. The mean value is 

 

 
 

FIG. 2. Schematic diagram of quantum nondemolition 
measurement using nonlinear Kerr effect. 
 

, (14)

 
 

where ηq is the quantum efficiency of the nondemolition 
measurement. 

As an example, consider the Kerr–effect measurement 
shown in Fig. 2. The laser light is transmitted through a 
nonlinear Kerr medium. The refractive index of the medium 
is changed slightly by the laser power. A probe laser is used 
to measure the refractive index change interferometrically. 
The probe laser is operated at a different wavelength or  
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different polarization so light from the primary laser passes 
through the beamsplitters and the Kerr medium with small 
loss. The interferometer output is detected, the photon number 
is inferred, and the result is amplified and used as the 
feedback signal. In this case, ηq would be the product of the 
following factors: 

1) the transmission coefficient of the first beamsplitter 
and the front of the Kerr medium, 

2) the change in the refractive index of the medium per 
signal photon, 

3) the change in phase of the probe–laser light per unit 
change in refractive index, 

4) the change in probe power out of the interferometer 
per unit change in phase, and 

5) the interferometer detector quantum efficiency.    
Reflections of the signal laser from the second beamsplitter 
and the rear of the Kerr medium do not affect the 
measurement and are not included in ηq. 

The variance of photon number is 
 

 (15) 

 

by analogy with Eq. (6). 
For a detector with less than unity quantum 

efficiency, the number of photoelectrons in any interval will 
be a binomial random variable with the number of incident 
photons as the number of samples and the quantum 
efficiency as the probability of a successful sample. The 
overall statistics can be found by averaging the binomial 
conditional statistics over the distribution of the number of 
incident photons. Thus 

 

, (16) 

 

and 
 

 
= 

 

= . (17) 

 

For large values of G, Eq. (17) reduces to 
 

 (18)
 

 

which approaches the Poisson value of < nd > for small 
values of quantum efficiency, but can become very small for 
near unit quantum efficiency. Here it should be noted that 
reflections from the rear of the Kerr medium must be 
included when calculating the effective value of ηd and   
can reduce squeezing significantly. 

If we place an absorber in front of the detector, the 
photoelectron number becomes 

 

 
. (19)

 
 

For small absorption, this suggests the estimator 
 

. (20)

 
 

The variance of this estimator is 
 

 
 (21) 

 

which approaches 
 

 

 (22)

 
 

for large gain and small absorption. 
From Eq. (22) we can see that squeezing reduces     

the uncertainty in the absorption measurement by a factor   
of (1 – ηd + δ)1/2 for small values of δ. Comparison of 
Eq. (22) with Eq. (13) shows that for the limit of small δ,  
the distribution   width   is   (1 – ηd)

1/2 narrower   than the   
distribution   width   obtained   with   an   ideal laser. For 
high–efficiency    photodetectors11 ηd = 0.9, which    results    
in three times the sensitivity. 
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