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Based on the Feynman path integral method the molecular relaxation 
(for molecules in a bath interacting with an electromagnetic field) is 
described in such a way that the phenomenological constant appears in the 
Schrodinger equation itself. 

 
The relaxation problem for a quantum system 

interacting with a field has always been of great importance 
for atmospheric optics.1 In linear spectroscopy it is the 
spectral line width and shift that are associated with the 
relaxation and the analysis of damping of quantum states 
has already become a concrete task. In the case of a strong 
field the situation is different. A great number of problems 
including those pertaining to the atmospheric gases are 
being solved using model versions (see, for example, 
Refs. 2–7). At the same time these questions are important 
for assessment of prospects for nonlinear spectroscopy 
methods and require efficient tools of analysis. 

A virtually exact description of the interaction 
between an isolated system and a resonant field in terms of 
the evolution operator is well known.8 The introduction of 
other Interactions, however (say, molecular collisions), that, 
in fact, are responsible, for the relaxation, makes the 
problem very complicated (see, for example, Ref. 9). The 
difficulties can be avoided but at the cost of considerable 
concessions of physical character (using, for instance, the 
strong collision model,10 where the saturation effect is 
described in terms of the relaxation time alone). In 
considering the field-matter interaction in terms of the 
matrix density formalism the relaxation constants appear 
immediately in the appropriate kinetic equations, but it 
becomes impossible to obtain solutions similar to those 
given in Ref. 8. 

The central idea of the present paper is to discuss the 
feasibility of introducing the relaxation constants directly into 
the Schrodinger equation relying upon the possibility of 
combining the advantages of the two approaches mentioned 
above. The way suggested here is clearly heuristic and 
requires an appropriate substantiation and test verification. 

We start from the path integral method.14 It has been 
assumed in Refs. 15–16 that possible alternative paths have 
a limited length l because of the relativistic condition l < ñτ 
(c is the velocity of light, τ is time). In other words it is 
proposed to write 
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Here ψ(r, t) is the particle wave function at a time t 
(moments t and t + τ are close enough), K0 is a conventional 
propagator to be discussed below, and f is the weighting 
function introduced for a mathematical realization of the 
assumption of limited l. 

Generally speaking, the introduction of the weighting 
function seems to be redundant since from the formal point 
of view for l > ñτ the exact relativistic propagator is 
converted from the oscillating function into the 
exponentially decreasing function. However, the presence of 
f(r – r1, τ) = f(κ, τ) in Eq. (1) leads to the salient features 
that can be used for introducing the relaxation into the 
equation for ψ. 

It was shown in Ref. 15 that the presence of the 
weighting function in Eq. (1) leads to the appearance of a 
non–Hermitonian term in the Hamiltonian which causes the 
damping of ψ(t). Now we suggest that this fact be 
interpreted in the sense that the limitation of the path 
length works as statistical noise which is the physical reason 
for relaxation. Proceeding with this interpretation we will 
assume that f is related to a random change in the path 
direction. If the change is of Markovian character, then 
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where Dx, Dy, Dz are some "diffusion coefficients" of the 
end points of the paths along the chosen directions in the 
bath. 

Discrimination of paths by means of Eq. (3) allows us 
to account for the effect of the environment on the ψ–
function of the particle, since the summation of the 
alternative probability amplitudes takes into account both 
their phases, which are primarily caused by the regular 
external fields and "the intensity", which depends on the 
effect of random factors. 

For a particle in the electromagnetic field the 
propagator K0 can be written to within the normalization 
constant B: 
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(e and m are the particle charge and mass and ϕ(r, t) and 
A(r, t) are scalar and vector potentials of the external 
field). 
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Taking Dx = Dy = Dz = D in Eq. (3) and using 
standard manipulations one can readily arrive at the 
Schrodinger equation 
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with α = (2h/mD) > 0. 
The fact that the changes in Eq. (6) due to Eq. (3) 

have touched upon the kinetic energy operator seems fairly 
reasonable: the higher the velocity, the larger is the volume 
size where the particle can be found for a given time and, 
accordingly, the greater is the collision probability and the 
probability for the state of the system to change. 

The previously mentioned non–Hermitian character of 
the Hamiltonian in Eq. (6) naturally results in the 
nonconservat ion_ of the wave function normalization. 
Uhile this circumstance is quite acceptable in the treatment 
of unstable particles15 (incidentally, this property of Eq. (6) 
illustrates a certain flexibility of the proposed procedure), 
the application of this equation to stable systems implies 
additional modificat ion. 

To derive an equation which is appropriate for the 
description of molecules whose lifetime is much longer than 
the time of damping of the excited quantum states, we will 
supplement K(r, r1, t, τ). In so doing, we will take into 
account that Eq. (3) represents a stable distribution17 and, 
therefore, together with Eq. (4) preserves the most 
important group properties of the propagator. It is 
reasonable, on that ground, to make changes in the 
Lagrangian, the more so because it is determined to within 
the total derivative with respect to time. Thus ue will 
supplement Eq. (5) with a functional of the wave function 
Φ (ψ (r, t)), assuming it to be dependent solely of time and 
requiring that the ψ–function satisfy both Eq. (1) and the 
normalization condition 
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The corresponding computations show that the simplest 
function will have the form 
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The conventional procedure with the propagator using 
Eq. (8) yields an integro–differential equation (instead of 
Eq. 6)) for the evolution of the system in the 
electromagnetic field with the Markovian perturbation of 
the form 
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Thus it follows from most general considerations that the 
behavior of the stable quantum system interacting with a 
bath can be described by a nonlinear equation (the term 
<ψ⏐ψ> in Eq. (8) is naturally taken to be unity). In general 
case, the problem of determining the wave function which 
satisfies Eq. (9) is rather complicated, and a simple 
substitution shows that one of the possible solutions is as 
follows: 
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where ψ1 is a function which satisfies Eq. (6) (some solutions 
of Eq. (6) can be found in Ref. 16). Incidentally, the 
substitution (10) reveals the pragmatic sense of the entire 
renormalization procedure leading from Eq. (6) to Eq. (9). 

The generalization of Eq. (9) to the case in which 
"diffusion coefficients" are different along he different axes 
is trivial. Let x1 = x, x2 = y, x3 = z, Dk = Dxk, Ak = Axk, 

Pk = –ih
∂
∂xk

 , and α = 2h/mDk. Then we have 
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where the following notation is introduced 
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Equations (9) and (12) are written to illustrate the idea for 
a single particle. Consequently, they include a small 
number of phenomenological parameters, which may be 
insufficient for the calculations of concrete systems. In 
addition, it should be noted that a standard derivation of 
the evolution operator proceeding from Eqs. (9) and (12) is 
faced with certain difficulties, in particular, due to the 
dependence of the evolution operator on the initial state of 
the quantum system caused by the nonlinearity of the 
starting relations. If we are to take into consideration the 
above circumstances, we will pass over from Eq. (12) to a 
more general equation. First of all, account should be taken 
of the fact that in a system, which consists of a great 
number of particles (an atom or a molecule), it is sufficient 
to include the interaction between electrons in the potential 
energy operator. As a result, the kinetic part of the 
Lagrangian can be written as an additive function with each 
term corresponding to an individual particle. In addition the 
particles of the molecule can interact with the bath in 
different ways. Therefore, each particle will be associated 
with its weighting function characterized by its coordinates 
and "diffusion coefficients". Then, proceeding to the 
problem of many particles in Eqs. (1)–(5) we can write 
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In Eq. (13) the summation is taken over all the electrons, 
∧
Pk is the momentum operator for the kth particle, and 
α = 2h/mDk (taking Dkx = Dky = Dkz = Dk). Both Eq. (13) 
and the juxtaposed equation for "a normalized function" 
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have formally the same structure as Eqs. (6) and (11), but 
may contain a far greater number of variable parameters 
(evidently some of them can be taken identical if 
necessary). 

Now we will proceed to the dipole approximation in 
Eq. (14). It can be done if we represent the wave function 
in the form of the product8,18 
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where A(R, t) is the vector potential defined in the center 
of mass of the molecule. A little manipulation yields 
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where V = d ⋅ E(R, t) is the perturbation operator, d is the 

dipole moment, and E = – 
1 A

c t

∂

∂
 is the electric field. 

Equation (16) can be approximately replaced by 
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where H0 is the Hamiltonian of the unperturbed molecule 
and Ï is the superoperator with the diagonal matrix 
elements 
 
Πjj= 1 / (1 + iαj), (18) 
 
which introduces the appropriate relaxation constant related to 
αj for each energy level. Similarly, Eq. (13) is replaced by 
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The above equations, especially Eq. (19) with the 
normalization condition (10) enables us to examine the 
behavior of the molecule under the effect of statistical 
perturbation in the electromagnetic field, using standard 
methods for the solution of the Schrodinger equation. In 
particular, the problem can be divided into two parts: first, 
the unnormalized basic wave functions are to be found for 
the state of molecule in the bath by solving the equation 
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and then the effect of radiation is to be accounted for. This is 
what we need. Thus the problem formulated in this paper 
appears to be solved to a considerable extent. We have derived 
equations which are, as a matter of fact, the Schrodinger 
equations but written for the wave functions averaged over the 
bath states, and, hence, the relaxation processes should be 
taken into account. The behavior of a two—level system in a 
strong harmonic field and its relaxation after the field has 
been switched off was verified by means of Eqs. (19) and (10) 
to give correct results, i.e., oscillations of the level populations 
with the Rabi frequency and their damping according to the 
exponential or (depending on the conditions) bi-exponent ial 
law of free polarization (as observed in a number of 
experiments3). 

In proceeding to the evolution operator ∧g (t, t0) of a 
quantum system interacting with the bath the resulting 
equation is to have a formal structure slightly different from 
Eq. (17) because Eqs. (16) and (17) are nonlinear as 
previously 
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where Π1 is a nonlinear superoperator in 
∧
g  which satisfies 

not only Eq. (21) but the operator relation 
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In conclusion it should be noted that even though the 

equations proposed in this paper have been derived using 
the Gaussian weighting function, the assumption of the 
Markovian character of the perturbation is not necessary. 
The only restriction imposed on f(ê, τ) is the requirement 
that the propagator (2) be a group element for small τ. This 
fact gives us the possibility by a special choice of the 
weighting function to describe not only the relaxation of 
different subsystems of quantum ensembles but also their 
interaction in turns of the bath, for example, the mutual 
effect of electronic and rotational–vibrational terms of 
molecules. 
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