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Asymptotic formulas of radiative transfer theory for diffuse fluxes 
emanating from the optically dense homogeneous scattering layer are studied. 

Analytic expression for the parameter s = 
1 – Λ

3 – x1

  has been derived in terms 

of the radiative fluxes, which along with the formula obtained in Ref. 5 solves 
the inverse problem for the cloud layer. The accuracy of expressions and their 
range of applicability are investigated. Based on airborne measurements of 
spectral diffuse fluxes of solar radiation, the spectral dependences of volume 
scattering coefficients and the real light absorption coefficients in the cloud 
layer are calculated. 

 
Optical properties of a disperse medium (in this case 

the cloud layer) are connected with absorption and 
scattering of radiation transmitted through it and depend on 
effective size, chemical composition, and form of particles 
which compose a medium. Spectral dependences of 
scattering, and absorption coefficients provide an Insight 
into the microphysical properties of cloudiness. In situ 
measurements of microphysical and optical parameters of 
the atmosphere and atmospheric aerosols are very difficult 
and not always quite reliable. Airborne optical 
measurements at different altitudes in the atmosphere 
permit determining the values of scattering and absorption 
coefficients1 and thus form a basis for the numerical 
calculation of atmospheric physical characteristics (in this 
case of a cloudy atmosphere). 

At the same time scattering and absorption of solar 
radiation in the cloud layer are the most important factors 
that determine the interaction of the radiation with 
cloudiness and greatly affect the energy balance of the 
atmosphere. It is well known that the amount of radiative 
energy absorbed by a cloud makes sometimes up to 20% 
from the energy incident on the upper cloud boundary and 
can provide the ∼ 2° rate of heating of the atmosphere a 
day. Thus possibly more exact values of the scattering and 
absorption coefficients are necessary for creating adequate 
climatic models of weather and climate forecasting which 
take cloudiness into account.2 We will discuss absorption 
and scattering in detail later when the results of individual 
experiments for different cloud layers will be interpreted 
based on the technique suggested in this paper. Let us 
indicate that, apparently, atmospheric aerosol is of dramatic 
importance for absorption of solar radiation in the visible 
range outside the molecular absorption bands. 

Problem formulation. Let us examine the plane 
homogeneous cloud layer, infinite in horizontal direction. 
Optical thickness of this layer is τ0 = σz, where σ is the 
scattering coefficient, z is the geometric thickness of the 
layer, Λ = σ/(κ + σ) is the albedo of single scattering, and 
ê is the coefficient of real absorption. 

The parallel flux of solar radiation is incident on the 
upper boundary of the layer at an angle arcos ζ with respect 
to the normal to the layer, F↑ is the monochromatic flux of 

scattered radiation reflected from the layer in units of 4-
πSζ, F↓ is the transmitted flux, and A is the albedo of the 
underlying surface. Let us introduce the value 

s = 
1 – Λ
3 – x1

 , which comprises not only absorption 

properties of a medium, but characterizes the scattering 
phase function in terms of the first coefficient of expansion 
of the scattering phase function in a system of the Legendre 
polynomials x1. 

Airborne measurements1 of spectral fluxes of solar 
radiation at different heights in the atmosphere are carried 
out in absolute units. 

After having divided the measured values into the 
value of the flux incident on the upper boundary of the 
cloud layer, we shall obtain the relative values of fluxes 
that are used in the subsequent theoretical transformations. 
After having divided the upwelling flux at the hight of the 
underlying surface we may assume the values F↑ , F↓, and A 
to be well–known for the spectral range 0.4–0.9 μm with 
step 0.02 μm. 

Expressions for relative fluxes of diffuse radiation have 
the form3,4 
 

 (1) 

 

 (2) 

 
where a(ζ) is the plane albedo of the layer and u(ζ) is the 
Miln function, which defines the angular distribution of 
scattered radiation transmitted through the upper boundary of 
the layer. There are tables of the function u(ζ) in Ref. 6. 

Q = 2 
⌡⌠
0

1

 u(ζ) ζ dζ, M, and N are defined by the integral 

ralatios,3,4 k is the parameter usually called diffuse exponent  
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or inverse diffuse length, the bar over symbol means an 
account of reflection of the radiation from the underlying 
surface 
 

 (3) 

 

where a∞ = 2 
⌡⌠
0

1

 a(ζ) ζ dζ is the spherical albedo of the 

semi–infinite atmosphere. 
The problem of determining of the optical thickness of 

the cloud layer τ0 has been solved in Ref. 5 starting from 
the measured values of reflected intensity of radiation and 
the relation analogous to formula (1). In addition, it is 
assumed in Ref. 5 that the absorption in the cloud in the 
visible spectral range is so small that we can neglect it. 
Therefore, the study is performed for the value of Λ = 1, 
which is specified a priori. The albedo of the underlying 
surface in Ref. 5 is equal to 0.2. When we shall discuss the 
results of our paper, we shall show that it is necessary to 
take into account absorption and real values of the surface 
albedo in order to obtain true values of τ0. 

Solution of the problem. Expression (28) derived in 
Ref. 5 from the formula for the reflected intensity of the 
radiation is of interest for solving our problem. In a similar 
way starting from formula (1) we shall derive the following 
relation: 
 

 (4) 

 
We also shall substitute Eq. (4) into the expression for the 
flux transmitted through the layer (2) and after the trivial 
transformations we shall obtain 
 

 (5) 

 
The asymptotic expansions of values and functions included 

in Eq. (5) in terms of the small parameters 1 – Λ  are 
well known.4 Let us write these expansions in terms of the 

parameter s =
1 – Λ
3 – x1

  considering the terms of the order 

of s2 
 

 (6) 

 

where σ = 4 
⌡⌠
0

1

 u0(ζ) ζ2 dζ = 1.427, u0(ζ) is the function 

u(ζ) for Λ = 1, and the expressions for the coefficients Q2 
and u2(ζ) nearby s2 will not be expanded since in 
subsequent calculations they will be reduced. 

The function a2 (ζ) being the coefficient adjacent to s2 
has the form3 
 

 (7) 

 

Here x2 is the second coefficient In the expansion of the 
scattering phase function in a system of the Legendre 
polynomials. Functions υ(ζ) and u0(ζ) are given by the 
integral relations in terms of azimuth–independent term in 
the expansion of the light reflectance ρ0(η,ζ) considering 
only light scattering.4 
 

 (8) 

 

In the right side of Eq. (6) we take the function u0 (ζ) out 
of the brackets 
 

 (9) 

 

Using the detailed tables for the functions υ(ζ) and u0(ζ) 
from Ref. 6, we calculated that υ(ζ)/u0(ζ) is the linear 
function of ζ and has a form 
 

υ(ζ)/u0(ζ) = u0(l) ζ – 0.9. (10) 
 

The values of a2(ζ) were calculated for 4 types of the 
scattering phase functions and subsequently averaged 
(Table I). Numerical test calculations showed that in 

practice the mean values 
–
a2(ζ) provide sufficient accuracy of 

numerical calculations. Thus, if the scattering phase 

function is unknown, one can use the values 
–
a2(ζ) given in 

the table. 
Taking into account expressions (8), we can write 

 

 
 

 

(11) 

 



V.I. Bukatyi and M.Yu. Sverdlov Vol. 4,  No. 1 /January  1991/ Atmos. Oceanic Opt.  37 
 

 

TABLE I. The values of function –a2(ζ). 
 

g \ζ 0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.75 1.310 2.220 3. 118 4.078 5.126 6.256 7.475 8.786 10.194 11.696 13.290 
0.8 1.267 2.236 3. 151 4. 117 5. 163 6.289 7.494 8.796 10.184 11.664 13.234 
0.85 1.201 2.242 3. 181 4. 148. 5. 198 6.320 7.512 8.798 10.167 11.625 13.181 
0.9 1.092 2.244 3.208 4.193 5.237 6.350 7.529 8.808 10.159 11.597 13.120 
–a2(ζ) 

 

1.217 
 

2.236 
 

3. 165 
 

4.209 
 

5. 181 

 

6.304 
 

7.503 

 

8.797 
 

10.176 
 

11.646 
 

13.206 

This relation can be useful for finding the function ρ0(η, ζ) 
In the explicit form. 

Now let us find the value s. For this we substitute 
expansion (6) into Eq. (5), multiply considering the terms 
of the order of s2, and derive 
 

 
 

 (12) 
 

Let us use the relation 
 

 (13) 

 

analogous to that obtained in Ref. 5. By substituting 
expansion (6) into Eq. (13) and taking into account that 
k = (3 – x1) ⋅ s, we derive the expression for τ0 
 

 
 

 
 

 

(14) 

 

where the notation τ′ = (3 – x1) ⋅ τ0 is introduced for 
convenience. 

In the derivation of Eq. (14) in the expansion of the 
value k we restrict ourselves to the term ∼ s and consider 
the term ∼ s2 under the logarithm because the numerical test 
calculations showed that in such a form formula (14) 
provides the highest accuracy. 

Thus the derived formulas have quite a simple form 
and calculations are not difficult. At the same time these 
formulas makes it possible to solve rigorously the problem 

of finding the values s2 =
1 – Λ
3 – x1

  and τ′ = (3 – x1) ⋅ τ0 

for the measured fluxes of radiation emanating from the 
cloud layer for large optical thickness of the layer and weak 
absorption. The expressions (12) and (14) are derived from 
asymptotic formulas of transfer theory which are the unique 
and rigorous solution of the radiation transfer equation 
under conditions of τ0 . 1 and 1 – Λ n 1. 

It should be noted that the combination (3 – x1) which 
is associated with the form of the scattering phase function is 
included in both of the values sought. This fact follows from 
the nature of multiple anisotropic light scattering (here it is 
pertinent to mention the similarity ratio3 which expresses the 
same physical meaning). For revealing the properties of the 
scattering phase function it would be useful to use 
supplemental measurements (may be of microphysical 
character) and techniques for their interpretation. 

Let us indicate one more aspect. The coefficient of real 
light absorption in the layer of the thickness z may be 
written in the form 
 

 (15) 
 

From which it follows that if we know the values of τ′ 
and s2, we can find readily the value of κ without the use of 
the data on the scattering phase function 
 

 (16) 
 

Systematic errors and range of applicability. Let us 
assume that we know the values f1 of a definite function 
f(x) and graph of f(x) variations and want to find the 
corresponding values of argument x1. It is clear that we can 
find them with higher accuracy for larger variations of the 
function f(x). This expresses the well-known fact: if we find 
the function being inverse to the initial function x(f), the 
error is inversely proportional to the derivative f ′(x). This 
fact is widely used in statistical methods of solving the 
inverse problems, in which the partial derivatives are 
calculated with respect to a number of variables sought and 
the matrices of the quantities are formed which are inverse 
to the derivatives and determine the corresponding errors. 

Starting from the indicated reasons, we find the 

derivatives 
∂F↑↓

∂s  and 
∂F↑↓

∂τ0
  

 
 (17) 

 

 
Taking account of the expansion (6) within an 

accuracy to s we obtain the derivatives 
 

 

 
(18) 

 

 
 

To estimate the errors it is sufficient to take into account 
the terms which determine the order of magnitudes. We 
then can write for small s 
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and  (19) 

 
i.e., the relative errors in the values sought are proportional to 
the relative errors of measuring the radiative fluxes. But 
relations (19) are valid only in the range of applicability of 
asymptotic formulas (1) and (2) and expansions (6) and (18). 
The range of applicability has been studied in detail with the 
help of both theoretical considerations4,7 and numerical 
calculations.18 Here we shall determine the error calculated 
from the derived formulas as functions of the values τ0 and 1 –
 Λ on the basis of the model calculations of the scattering 
radiation fluxes for τ0 = 3–50, Λ = 0.7–1.0, and x1 = 2.55 
that have been performed by the method of summation over 
the layers.8 Figure 1 shows the corresponding dependences of 
relative errors δ τ0 and δs on Λ for a fixed value of τ0 = 25 and 
on τ0 for a fixed value of Λ = 0.999. It is evident that for 
larger values of absorption (smaller Λ) the error in  

determining τ0 increases sharply. It can be readily understood 
since τ0 is determined by the logarithmic dependence. 
Therefore, in formula (14) we considered the term of the order 
of s3 to improve the accuracy of the numerical calculation of 
the expression under logarithm. It should be noted also that 
uncertainty in assigning the albedo of underlying surface A 
and real absorption in the layer In terms of the value s results 
in gross error in calculating from formula (14), and it is 
difficult for us to agree with the author of Ref. 5 who stated 
that the relation analogous to Eq. (14) for Λ = 1 for the 
intensity along with the measurements of reflected radiation 
are sufficient for determining optical thickness of the layer. In 
this case only quite a rough estimate of τ0 is possible. For the 
exact determination of τ0 from the data of measuring the 
reflected radiation, the measurements performed under the 
cloud layer, at least ground–based measurements, are also 
necessary. To investigate the cloud layers in detail, of course, 
the airborne measurements with heigh-range resolution 
performed outside and inside the cloud layer are preferable. 
 

   
 

FIG. 1. Relative errors in determining τ0 and s from the formulas (21) and (22) (δτ is indicated by curve 1 and δs is indicated 
by curve 2; g = 0.85): a) as a function of Λ for τo = 25 and b) as a function of τ0 for Λ = 0.999. 
 

Application of the formulas to the interpretation of 
the experimental results. Let us apply the derived 
formulas to the interpretation of experimental data from 
Ref. 1. Let us describe briefly the conditions and the 
results of the experiment. The measurements were carried 
out on April 20, 1985 on board aircraft–laboratory "IL–18" 
over Lake Ladoga. The underlying surface was covered by 
ice and snow with rather high reflectance, 
cosθ = ζ = 0.647, and the thickness of the cloud layer z 
was ∼ 1.1 km. The values of radiative fluxes are given 
with step 0.02 μm for the visible spectral range 0.4–
0.9 μm. The measurement errors are about 2%. Figure 2a 
shows the hemispherical fluxes of solar radiation 
emanating from the upper and lower boundaries of the 
layer which are scaled to the flux incident on the upper 
boundary of the cloud layer and to the albedo of the 
underlying surface. 

The spectral dependence s(λ) (curve 2), which is 
shown in Fig. 2c, is determined from formula (12) applied 
to the data of measurements at each wavelength. Using 
formula (14) and the assumption that elongation of the 
scattering phase function is described by the parameter 
x1 = 2.55 and is independent of the wavelength, we 
obtained the spectral values of optical thickness of the 
cloud layer τ0(λ). If in addition we take into account that 
the thickness of the cloud layer is 1.1 km, we may pass over  

to the values of scattering coefficient σ = τ0/z shown in 
Fig. 2b. Spectral values of the coefficient of real light 
absorption κ(λ) calculated from formula (16) are given in 
Fig. 2c (curve 1). 

Now let us estimate the relative errors in the results that 
have been obtained hare. We shall discuss the relative error 
στ0 since it coincides with the relative error στ. In the spectral 
range 0.4–0.6 μm, where the value s ≤ 0.06; δs ∼ δF = 2% and 
δτ = δτ0 ∼ δF/κτ0 = δF/0.5 ∼ 4%. The quantity s increases up 
to 0.08 with the increase of the wavelength and according to 
Fig. 1a the relative error δτ0 increases and for s ∼0.08 it is 
approximately equal to 10—12%. The accuracy of determining 
s almost does not decrease and for s = 0.08 the error δs ∼ 3%. 
The spread of points in Fig. 2b for λ > 0.6 μm is explained by 
the increased error δτ0 ∼ 10%. 

The discussion of the properties of the cloud layer based 
on the obtained spectral dependences σ(λ) and κ(λ) falls 
outside the scope of this paper; this problem will be the 
subject of a new paper. It should be noted that in finding the 
values s and τ′ and more correctly, in deriving the 
corresponding formulas, some limitations were imposed (for 
example, that the plane layer is horizontally infinite and 
homogeneous). We intend to derive the analogous formulas for 
solving the inverse problem for the layers inclosed inside the 
single layer homogeneous and inhomogeneous in the vertical 
direction. 
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FIG. 2. Spectral dependences: a) hemispherical fluxes of diffuse solar radiation emanating from the cloud layer derived 
from the data of Ref. 1 (curve 1 indicates F↑, 2 — F↓, and 3 — A; b) volume light scattering coefficient; and, c) volume 
coefficient of real light absorption. 
 

In conclusion the author thanks A.I. Dem’yanikov 
for assigning the results of model calculations  
performed by the method of summation over the  
layers and E.A. Bezrukova and A.I. Shul'ts for their help. 
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