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We demonstrated that the time of arrival of a light pulse propagated in 
the refractive atmosphere depends on the mode light diffraction at the 
emitting aperture. The errors due to this effect in determining the distances to 
the objects using optical methods are estimated. 

 
The development, of methods of measurements |and 

parameters of laser ranging systems (LRS) substantially 
reduced (from some meters to some Wntimeters) the errors 
in measuring the distances to such objects as artificial 
Earth's satellites.1 

Further increase in the accuracy of LRS measurements 
required for solving the problems of geodesy, geodynamics, 
and geophysics can be achieved by using new laser sources 
due to compensation for atmospheric noise.2 

One of the components of errors in determining the 
distances to an object is the atmospheric refraction caused 
by inhomogeneities of refractive index of air. The currently 
available methods for correcting the refraction errors are 
based on formulas of geometrical optics. They make it 
impossible to evaluate the effect of inhomogeneity of refractive 
index on laser pulse propagation under arbitrary diffraction 
conditions in the plane of the emitting aperture. It will be 
demonstrated below that this may have significant effect on 
the accuracy of determinating the distance to ar object. 

The spatial distribution of the field in the emitting 
aperture plane of a laser source affecting the value of a time 
lag of a pulse propagating in a refractive medium is 
analyzed using the parabolic equation for a complex 
amplitude of wave. 

Let a laser source U0(ρ), ρ{x, y} be located in the plane 
z′ = z0. A wave pulse with a complex amplitude U(z′, ρ; t) 
propagates in a medium with the dielectric constant ε(z′, ρ) 
and is incident on a receiving lens with the amplitude 
transmittance T(ρ) in the plane z′ = z. In the receiving lens 
plane at the distance l from the lens a square–law detector 
is placed which records time of the wave pulse arrival. 

We shall define this time as follows: 
 

 (1) 

 

where W( l ,  t)  = 
⌡⌠

 d2ρ U t( l ,  ρ; t)  U
t

∗ (l, ρ; t )  is the 

wave pulse power recorded with the square-law detector, 
U t( l ,  ρ; t)  is the complex amplitude of the wave pulse 
field in the plane l behind the receiving lens. As known,3 
U t( l ,  ρ; t)  is related with the function U(z ,  ρ; t)  by 
means of the Debye relation. Hence, if the wave pulse is 
represented in the form 
 

 

where k = ω/c, ω is frequency, ñ is the velocity of light, 
and f(ω) is the temporal frequency spectrum of a pulse in 
the plane z′ = z0, then for τ, by analogy with Refs. 4 and 5, 
we shall derive 
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a0 is the effective radius of the square–law detector, ρ
t
 is the 

coordinate of the center of gravity of the intensity distribution 
in the plane of the receiving lens with the focal length F

t
,  

Γ(z, R, ρ; ω, Δω) = U(z, R + ρ/2; ω + Δω/2)U∗(z, R – ρ/2; 
ω – Δω/2) is the two–frequency function of mutual 
coherence of the wave field falling in the lens. The medium 
dielectric constant is written6 in the form:  
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where ε
–

 (z′) is the deviation of the dielectric constant of a 
medium from unity when ⏐ρ⏐ = 0, μ(z′) characterizes the 
gradient of the dielectric constant of a medium along the 
propagation path, and x0 is the unit vector perpendicular to 
the oz′ axis. The function Γ(z, R, ρ; ω, Δω) in the medium 
(3) for the narrow band (Δω n ω) pulse, in the parabolic 
approximation, satisfies the equation 
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with the initial condition 
 

 
 

where Δρ is the transverse Laplacian and Lρ is the transverse 

Hamiltonian. 
Equation (4) can be solved using the Fourier transform 

over the variables R and ρ. We obtain 
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where 
 

 
 

 
 

 
 

 
 

Let us examine the limiting cases of field distribution at 
the emitting aperture: 1) plane wave U0 (ρ) = 1 and  
2) spherical wave U0(ρ) = δ(ρ). Then for a delta–pulse 
(f(ω) = 1) from Eq. (2) taking Eq. (5) into account we derive 
for a plane wave, when the detector center is located at the 

point ρt, pl = 
Ll
2  (α + β) x0 , 

(6a) 

 

and for the spherical wave, when the detector center is located 

at the point ρt, sph = 
Ll
2  βx0 

 

 
 

 (6b) 

 

where Ω0 = 
ka0

2

L  , Ωt = 
kat

2

L  and at is the effective radius of 

the receiving lens. 
The last term in Eq. (6b) is always negligible as 

compared with the previous one. Taking this into account it 
follows from Eqs. (6a) and (6b) 
 

Δτ = τpl – τsph = 
3L3

8c  α2. 

 

The revealed difference between propagation time of 
the plane and spherical wave pulses may also be explained 
clearly based on geometrical optics. The figure depicts 
trajectories of refracted rays from the sources of plane 
(ray 1) and spherical (ray 2) waves. Let the lengths of 
rays 1 and 2 be estimated. It is possible to show7 that 
α1 = α3 and angle α1 is one half as much as angle α2 
provided that the angles α1 and α2 are small and 
μ(z′) = const. 
 

 
 

Fig. 1. Ray tracing geometry. 
 

The length L1 of ray 1 is estimated in terms of the 
tangent, segment to ray 1 at the point 0: L1 = OB and the 
length L2 of ray 2 is estimated in terms of the tangent 
segments to ray 2 at the points A and O: L2 = AC + ÎÑ. 
Geometrical plotting show that AC = ÎÑ = L/cos α1 and 
OB = L/cos α2. Hence, 
 

ΔL = L ( 1
cosα1

 – 
1

cosα2
) ≈ 32 Lα

1

2
 . 

 

Let us estimate the order of magnitude Δτ. As follows 
from Eq. (6), Δτ ≈ 1 ns for the path length L = 100 km and 

the angle of refraction κ ≈ 5′ (κ = 
L
2 α). This results in a 

difference in ranging ΔL = 0.3 m. The resulting value ΔL 
substantially exceeds the nominal error in ranging with the 
third generation of the LRS that necessitates accounting for 
diffraction parameters of the LRS when refraction corrections 
are introduced. 
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