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An algorithm for selecting the optimal phase when correcting turbulent fluctuations 
of a focused Gaussian beam is studied. The calculations are performed by the method of 
functional integration. 

It is shown that in order to optimize the average on-axis intensity of a focused 
Gaussian beam a phase-conjugation algorithm must be used for the correction, and the 
phase of a spherical wave, calculated in the approximation of the method of smooth 
perturbations, is employed as the correcting phase. 

 
 

In this paper we calculate the average intensity of a 
focused Gaussian beam, formed in a turbulent atmos-
phere with the help of an adaptive optical system that 
operates based on the phase-conjugation algorithm. A 
possible variant of the choice of the optimal correcting 
phase for focusing the beam of radiation is studied. 

It is well known that the scattering of light by 
nonuniformities of the index of refraction of a medium 
results in broadening of optical beams, the appearance 
of fluctuations in the intensity of the radiation, and a 
decrease in the average intensity near the axis, all of 
which ultimately substantially degrade the power 
characteristics of optical systems in the atmosphere. 
Different types of adaptive systems that are used to 
reduce the influence of these atmospheric effects.1,2 
Adaptive optical systems in turn are divided into 
systems that maximize some functionals of the 
transmitted field and systems that are based on the 
realizability of the principle of reversibility.1,2 

For optical systems the correction algorithm that 
realizes the principle of reversibility is phase conju-
gation (PC).3 It should be noted that the phase 
conjugation algorithm assumes conjugation of the 
total phase of the wave and reproduction of the am-
plitude. Adaptive phase correction algorithms are 
employed as alternatives to the method of phase 
conjugation. In these systems of adaptive optics only 
the phase of the wave is controlled, while the dis-
tribution of the radiation intensity over the initial 
cross section of the beam is unchanged. It is well 
known4 that for linear media the field of a wave that 
has passed through a slab of randomly nonuniform 
medium can be represented as a superposition of dis-
tribution of the field on the transmitting aperture 
 

 (1) 
 

where U0(1) is the initial distribution of the field on 
the transmitting aperture and G(x1, ; x0, 1) is the 

Green’s function for a randomly nonuniform medium 
in the slab between the planes x = x0 and x = x1. ’ 
We shall write the Initial distribution of the field 
U0(1) in the form 
 

 (2) 
 

where A(1) and (1) are the amplitude and phase of 
the initial distribution. The phase (1) is controlled 
with the help of an adaptive device. If the phase 
approximation5 of the form 
 

 (3) 
 

is used for Green’s function, where G0 is the Green’s 
function for free space while the phase 
S(x1, ; x0, 1) characterizes the fluctuations along 
the path (assuming that in a spherical wave the 
fluctuations are purely phase fluctuations), we obtain, 
substituting Eqs. (2) and (3) into Eq. (1), 
 

 
 

 (4) 
 

If the purpose of the correction is7 to maximize the 
intensity functionals in the plane x1, then we obtain 
the following condition for optimal phase correction 
 

 (5) 
 

The condition (5) depends on the observation point 1. 
To maximize Strehl’s parameter 
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the condition (5) becomes 
 

 (6) 
 
and therefore the initial phase of the distribution (2) 
must be the conjugate of the phase of a point source 
placed at the origin of coordinates.7 The measured 
phase of a wave from a reference point-like beacon can 
be used to construct an adaptive system for correcting 
distortions. 

Thus the phase from a reference point source, 
employed for correction using the phase conjugation 
algorithm, corresponds completely to the phase that 
maximizes functionals of the intensity (when the field 
is calculated in the  phase approximation5) for a point 
corresponding to the position of the point reference 
source. This can serve as a basis for constructing an 
experimental correction algorithm when working with 
reference sources. At the same time, in order to evaluate 
the effectiveness of adaptive optical correction systems 
one must know how to calculate the residual phase 
distortions in the system. Here the approximation em-
ployed for the function S(x1, ; x0, 1) is important. 

In Ref. 6 it was shown that the phase (3) in the 
geometric optics approximation is effective for calcu-
lating the characteristics of the corrected field. Here we 
shall try to find the optimal phase from the standpoint of 
maximizing, for example, the average intensity. In 
addition, we shall describe the propagation of radiation 
with the help of the functional representation of the 
field, corresponding to the parabolic equation ap-
proximation, describing the propagation of a wave in a 
randomly nonuniform medium. 

Consider the problem of adaptive focusing of a 
Gaussian beam in a turbulent atmosphere. We give the 
initial distribution of the field in the plane x0 = 0 in 
the form 
 

 (7) 
 
where () is the controlled phase of the beam, while 
the quadratic phase term in Eq. (7) gives focusing of 
radiation in a uniform medium at a fixed range x1 = L. 
Assume that the optimal phase is the phase of a 
spherical wave and depends linearly on the field of 
fluctuations of the dielectric constant (x, ) in the 
volume bounded by the planes x = 0 and x = L. Then 
we write () in the form 
 

 (8) 
 
Íåãå Ì(, , r) is an unknown function, which filters 
the contributions of nonuniformities of the medium to 
phase fluctuations on the propagation path. The 
function Ì(, , r) thereby determines the ap-
proximation for the phase () in Eq. (4). 

In the approximation of fluctuations of the di-
electric constant which are Gaussian and 5-correlated 
along the direction of propagation of the radiation, 
using the functional representation of the field the 
expression for the average intensity on the axis of a 
Gaussian beam with the field distribution (7) can be 
written in the form 
 

 
 

 
 

 (8) 
 
where 
 

 
 

 
 

 
 

 
 

 
 

 
 

 (10) 
 

where 2( , ) 2 ( , )[1 cos ],H d           (, ) is 

the spatial spectrum of fluctuations of (, ); v and v 
are the functional variables. Using the expression for 

( , 0) ,I L  we shall study the problem of the optimal 

choice of (). For this we calculate the variational 
derivative of Eq. (5) with respect to the function 
M(, r, ), and equating it to zero we obtain an 
equation for the optimal kernel: 
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 (11) 
 
Any attempt , to obtain an exact solution of Fq. (11) 
encounters serious difficulties, both because of the 
nonlinear character of the equation with respect to the 
function sought M and because of the complicated 
dependence on the functional variables v and v. 

Equation (11) can be solved by the method of 
perturbations, which in the first approximation is 
equivalent to neglecting the exponential term. It 
should be noted that the use of the method of per-
turbations is more justified for problems connected 
with the propagation of beams corrected by one or 
another method than for radiation with fixed char-
acteristics, since the purpose of the correction is to 
compensate for the perturbations introduced by the 
medium. The case of “weak perturbations” is more 
typical for such beams. An analysis based on pertur-
bations permits evaluating the conditions under which 
adaptive optical systems are effective and to determine 
the requirements which such systems must satisfy. 

The solution of Eq. (11) in the first approxima-
tion can be written in the form 
 

 
 

 (12) 
 

If the propagation of radiation is described in the phase 
approximation of the Huygens-Kirchhoff method,5 
then an expression analogous to Eq. (9), but differing 
by the fact that v and v do not appear in the function 
D(, ; v, v) from the expression (10), is obtained 
for the average intensity. Next, operating on the 
expression for ( , 0) ,I L  calculated in the phase ap-

proximation of the Huygens-Kirchhoff method, like in 
the case of Eq. (9), we obtain instead of Eq. (12) 
 

 (13) 
 

Substituting Eqs. (12) and (13) into Eq. (8), we 
obtain an expression for the optimal correcting phase 
which in the first case is identical to the phase of a 
spherical wave, calculated in the first approximation 
of the method of smooth perturbations, and in the 
second case is identical with the geometric optics 
expression for the phase of a spherical wave.10 In other 
words, the optimal (in the sense that the average 
on-axis intensity is maximized) phase for correcting 
distortions of a Gaussian beam is the phase of a point 
reference source placed at the origin of coordinates, 
and if the propagation of the radiation is described in 
the parabolic-equation approximation, then the op-
timal phase must be calculated in the first approxi-
mation of the method of smooth perturbations. 

We shall prove that the phase (8) employed in 
this case is optimal: the deviations of the average 
intensity from the diffraction intensity are minimum. 
For this, we compare the residual distortions for the 
correcting phase in the form (12) and (13). Let the 
initial amplitude distribution be Gaussian 
 

 
 

The calculation of the average intensity, normalized to 
the value in a uniform medium I0, performed in the 
first approximation of the perturbation method for the 
phase in the form (12) and (8) gives the following 
expression for the relative variation of the average 
intensity: 
 

 
 

 (14) 
 

while for the phase in the form (13) and (8) 
 

 
 

 
 

 (15) 
 
At the same time, for a focused beam with no cor-
rection the perturbation method gives 
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 (16) 
 

The symbols 0, 1, 2 were introduced for the 
relative variations of the average intensity in a focused 
beam for a system with no correction, with correction 
with optimal phase, and with correction based on the 
geometric-optics phase, respectively. Introducing for 
the power-law spectrum 2 11/3( , ) 0.033 ( )C 

        

the dimensionless parameters  = ka2/L and 
2
0 / ,q k L   where 0 is the coherence radius of the 

wave, we transform Eq. 16) as follows: 
 

 
 

 (17) 
 

For q < (even if q > 1) the focused beam is strongly 
broadened. 

In wide beams ( p 1) we obtain from Eqs. (14) 
and (15), respectively, 
 

 (18) 
 

where 
 

 
 

 
 

At the same time, for narrow beams ( ` 1) we 
have 
 

 (19) 
 

 (20) 
 

The condition for complete correction of the 
broadening of the beam and the condition for the method 
of perturbations to be applicable for calculating the 
average intensity, together with Eqs. (12) and (13), is 
that the right parts of Eqs. (18), (19), and (20) must be 
small. As follows from Eq. (18), in wide beams the use 
of any method of phase correction Eq. (12) or Eq. (13) 
results in virtually complete correction of the broad-
ening for 1 < q < , when, as one can see from 
Eq. (17), the uncorrected beam is strongly broadened; 
in addition, the relative change in the variations of the 
on-axis intensity owing to correction is 

 
 
For narrow beams ( ` 1), as one can see by com-
paring Eqs. (17), (19), and (20), correction based on 
the algorithm (7) and (8) is much less effective. Thus 
optimal phase correction approximately doubles the 
average intensity, while the correction (13) even 
decreases the average on-axis intensity 0. This result 
is expected, since it follows from Ref. 6 that correc-
tion in a narrow beam using a point reference source is 
ineffective (it is impossible to change significantly, as 
a result of such phase correction, the values of the 
moments of the intensity distribution). Even the 
expansion itself of the field in the form (1) is inap-
plicable for a narrow beam. It is shown in the same 
work that in order to correct distortions in narrow 
beams a wide reference source must be used, and in the 
limit a reference plane wave must be used. 

The results obtained in this work are a systematic 
justification of correction based on the phase conju-
gation algorithm. The proposed methodology for 
optimizing the phase can be developed in the future, 
but the computational method must be tailored to the 
characteristic that is being evaluated. 

At the same time the results of Ref. 7 are valid 
only in the region where the phase approximation is 
applicable, if the results obtained in Ref. 7 are em-
ployed for calculating the quality of the correction. 
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