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Three-dimensional models of the transfer of natural visible radiation in the at-
mosphere and their applications in the investigation of the transfer properties of the 
atmosphere and the solution of optical remote sensing problems are studied. The models 
are based on the theory of boundary-value problems for the integrodifferential radiation 
transfer equation in the system ground- atmosphere. A classification of boundary-value 
problems is given. In this classification the albedo nonuniformities, surface reflectance 
anisotropy and the horizontal nonuniformity of the scattering medium, and the polari-
zation of the radiation are taken into account. 

The applications of three-dimensional models of the transfer theory which are in-
cluded in the review contain the following: methods for constructing the optical transfer 
operator of the atmosphere; calculations of the point-spread function and the optical 
space-frequency characteristics of a layer of a turbid medium, and profiles of the 
brightness and contrasts of natural objects observed through the atmosphere; calculations 
of the spatial resolution of satellite images taking into account the side illumination; 
investigations of the characteristics of radiation transfer in horizontally nonuniform 
clouds and the construction of algorithms for filtering a semitransparent cloud cover; 
methods for solving inverse problems of reconstructing the two-dimensional albedo, the 
reflection phase function and the reflection matrix of the ground; and, the problems of 
incorporating in the system for processing of remote sensing data a block which takes into 
account the effect of the atmosphere. 

 
 

INTRODUCTION 
 

The current status of the theory of solar-radiation 
transfer in the atmosphere is largely determined by 
progress in three-dimensional modeling. 
Three-dimensional models are used to describe the light 
fields in the presence of horizontal nonuniformities of 
the optical parameters of the medium and the reflective 
characteristics of the underlying surfaces; they are based 
on the solutions of boundary-value problems for the 
integrodifferential transfer equation. In Refs. 1–3 the 
three-dimensional problem of radiation transfer above a 
Lambertian surface with a nonuniform albedo as well as 
the related problems of calculating the optical transfer 
functions of the atmosphere were studied. In the reviews 
Refs. 4 and 5 a quite wide range of models was studied, 
but the authors cited mainly their own works and ig-
nored foreign works. In addition, in the periodicals little 
attention is devoted to comparing investigations per-
formed in this country and abroad; this often gives a 
misleading impression of the novelty of the results 
obtained. In this paper investigations in the field of 
solar-radiation transfer in a three-dimensional medium, 
excluding broken clouds, are generalized based on in-
formation published over the last ten years. 
 

1. CLASSIFICATION AND ARCHITECTURE OF 
BOUNDARY-VALUE PROBLEMS 

 
Boundary-value problems in the theory of 

transfer, on which three-dimensional models are based, 
are classified according to the degree of complexity. 
The degree of complexity is determined by a number of 
factors, including the anisotropy and horizontal 
nonuniformity of the luminance factors of natural 
surfaces, the horizontal nonuniformity of a layer of the 
atmosphere, and the polarization of radiation propa-
gating in the medium. The term architecture refers to 
the construction of the solutions of complicated 
boundary-value problems, starting from the solutions 
of the simplest, basic problems. An illustration of this 
conceptual organization is given in Ref. 6. 

Possible variants of the classification of scalar and 
vector problems are presented in Tables I and II. The 
classifications include one-dimensional boundary-value 
problems which are related in a natural manner with the 
three-dimensional problems. In Tables I and II the 
following notation is employed: D, ,I  ,I  I, I, D, ,J  

J are the radiation brightnesses: D, ,I  ,I  I, I, D, ,J  
J are the Stokes vectors; , , ,  are the scalar,  
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vector, and matrix optical space-frequency characteris-
tics and 0, 0,  0, 0  are their values at p = 0; S 

is the solar constant; ( ),
d

L z
dz

     

( , ) ( ),L s z    ( , ) ( , ),L s z r     

ˆ ( , ) ( )
d

L i p s z
dz       are the differential transfer 

operators; 
 

 
 

 
 

 
 

 
 

 
 

 
 
are integral multiple scattering operators; 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
are the integral reflection operators; l = {1, 0, 0, 0}; 

( ),z  ( ),z  ( , ) ( ) ( ) ( ),z r z z r       

( , ) ( )z r z    ( ) ( )z r   are the average and hori-
zontally nonuniform attenuation and scattering coef-
ficients; f(s, s0) is the scattering phase function; 
F(s, s0) is the angular matrix; q(r), (r, s, s0), 
(r, s, s0) are the albedo, the luminance factor and 
the scattering matrix of the underlying surface; q, 
(s, s0), (s, s0) are the same quantities averaged over 
horizontal coordinates; 
 

 
 

 
 

 
 
is the isotropic reflection matrix; E is a unit matrix; 

s = {, s1} is a unit vector 0;  = cos; 21s      

{cos , sin };    and  are the zenith and azimuthal 

angles; s0= {, s0} is the direction of incidence of the 

solar rays;  = cos0;  2
0 1 , 0 ;s      0 is the 

Sun’s zenith angle;  is the unit sphere; + and – are 
the lower and upper hemispheres; z is the vertical 
coordinate; r = (x, y) is a vector in the horizontal 
plane;  = (x, y) is a vector of the spatial fre-
quencies; h is the height of the atmosphere: z = 0 and 
z = h are the upper boundary of the atmosphere and 
the ground. 

 
TABLE I. Classification of scalar boundary-value problems in the theory of transfer. 
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TABLE II. Classification of vector boundary-value problems in the theory of transfer. 
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In the tables some intermediate combinations, as 
well as more complicated combinations which are not 
significant for applications, are omitted. Figure 1 
shows the hierarchical tree, whose branches can be 
extended in accordance with the formulation of the 
boundary-value problem. 
 

 
 
FIG. 1. Architecture of scalar boundary-value 
problems in the theory of transfer. 

 
The architectural relations of the vector models 

can be represented analogously. We shall examine the 
most characteristic examples. The solution of the 
boundary-value problem Eq. (4) for s I   can be 
expressed in terms of the solution of the simplest 
problems (1) and (2) in the form7,8 

 

 (25) 
 

where 
 

 
 

 
 

 
 

is the optical thickness of the atmosphere. 
The solutions of the boundary-value problem with 

anisotropic reflection (5) were studied in Refs. 1, 7, 
and 9–13. It is useful to represent I  as a sum of three 
terms 
 

 (26) 
 

The terms 1I  and I  satisfy the boundary-value 
problems 
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In Ref. 11 it is shown that replacing the natural 
reflection 0( , )s s  by Lambertian reflection q  when 

calculating I introduces an error of < 1%. Setting 
R I R I     and 1 1R I R I    we obtain 
 

 (27) 
 

The representation (26) and (27) makes it possible to 
simplify substantially the solution of the bound-
ary-value problem (5) without reducing the compu-
tational accuracy. 

The problem with nonuniform Lambertian re-
flection (8) was studied in Refs. 1, 6, 10, 11, and 
14–25. The solution of this problem is represented in 
terms of Eqs. (4) and (5) as follows: 
 

 (28) 
 

where 
 

 (29) 
 

 
 

 
 
The function   (z, p, s) plays a fundamental role 
in the theory of vision in turbid media. The radiation 
characteristics D, E0, ñ0, C(p), 0, determine the 
effect of the optical transfer operator, which trans-
forms the albedo of the underlying surface ( )q r q   

( )q r   into the brightness of the outgoing radiation. 

The quantity I  depends nonlinearly on ( ).q r  An 
exact expression for this quantity was found in 
Refs. 20 and 26. For real values of the optical 
thickness 0 of the layer of atmosphere and the average 
albedo q  the contribution of I  to the total bright-
ness I does not exceed 1%. 

The questions of taking into account simultane-
ously the anisotropy of reflection and the nonuni-
formities of the albedo of the ground were investigated 
in Refs. 10, 11, and 13. For the case 

0 0 0( , , ) ( , ) ( ) ( , )r s s s s q r s s      the following ap-
proximation is proposed: 
 

 (30) 
 

where 0

0

.I I
 


   An expression for I  can be presented 

in the Ref. 13. In the general case (r, s, s0) = 

0
1

( ) ( , )
M

m m
m

q r s s


   the solution can be constructed 

analogously. Like in the examples presented above, 
the boundary-value problem (9) reduces to the simpler 
problems (5), (7), (2), and (3). 

The horizontal nonuniformity of the atmosphere 
is given by the coefficients27,26 
 

 
 

 
 
The boundary-value problem (10) was used to describe 
radiation transfer in horizontally nonuniform 
clouds,27–31 and in addition the factors ( )r  and ( )r  
were represented by finite harmonic series. In the case of 
arbitrary ( )r and ( )r  and q(r)  0 the solutions of 
the problem (10) were studied in Refs. 24, 26, and 32. 

The architecture of vector boundary-value prob-
lems is very similar to that of scalar boundary-values 
problems,33–36 and for this reason we do not give here 

the corresponding examples. 
The foregoing discussions makes clear the prin-

ciple of classification of boundary-value problems 
based on the degree of complexity, which is deter-
mined by the specification of the optical properties of 
the atmosphere and the ground. Using the principle of 
solution construction for complicated problems with 
the help of solving the elementary problems, it is 
possible to construct a model in which all factors that 
form the spatial and angular structure of the bright-
ness fields are taken into account simultaneously: 
anisotropy and nonuniformity, reflection of the 
ground, horizontal nonuniformity of the scattering 
medium, and polarization of the radiation. In solving 
practical problems, however, some factors are found to 
be unimportant. For this reason, in most works sim-
plified models are studied. 
 

2. METHODS FOR SOLVING  
BOUNDARY-VALUE PROBLEMS 

 
We shall discuss the methods used to construct 

the solutions of three-dimensional boundary-value 
problems in a plane-parallel geometry. 

2.1. Method of optical space-frequency char-
acteristics ( representation). The physical content 
of the method lies in the description of the transfer of 
an optical image from the standpoint of the theory of 
linear systems. Such a description reduces to calcu-
lating the impulse transfer function or the frequency 
characteristic of the system.2 Methods for calculating 
the brightness fields of luminous objects in a scattering 
medium using the frequency-contrast characteristics of 
the medium were proposed in Refs. 37 and 38. The 
idea of a linear systems approach was developed further 
in Refs. 39–42. In Refs. 23 and 43–45 the fre-
quency-contrast characteristics were obtained from 
solutions of boundary-value problems. The method of  
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optical space-frequency characteristics was defined, on 
the basis of the boundary-value problems of transfer 
theory, in Ref. 17. It was further developed in 
Refs. 19–21 and in Refs. 26, 24, and 46 it was ex-
tended to the case of a horizontally nonuniform at-
mosphere and in Ref. 36 it was also extended to 
problems including polarization. 

The system for transferring an optical image in a 
horizontally uniform atmosphere is interpreted as a 
nonlinear system described by a collection of transfer 
functions {n}. The  representation is convenient for 
analysis and calculations, since the solution is repre-
sented by a sum, averaged over the horizontal coor-
dinates, of the variational and nonlinear (relative to 

( )q r ) components. The nonlinear component is de-
termined by rereflection of photons by optical non-
uniformities of the reflecting surface (see the formulas 
(26) and (28)). The effect of the pedestal is small and 
is characterized by the denominator on the right side of 

the equation ,
1 ( )

W
qC p





 where W is the optical 

space-frequency characteristic of a scattering layer 
with the albedo 0.q   The most general interpreta-
tion of the method is presented in Refs. 5 and 26. 

2.2. Method of multiple rereflections 
(Î-representation). This method consists of counting 
the photons reflected from the surface a given number 
of times.16,21,47,48 This method was developed for 
solving scalar and vector problems in a horizontally 
nonuniform atmosphere16,35,48 and can be extended to 
the case of a horizontally nonuniform medium. In 
Ref. 21 it was shown, by direct verification that the  
and O representations give the same solution for the 
direct problem of radiation transfer above a surface 
with a nonuniform albedo (8). 

Summing photons according to the number of 
times they are rereflected from the surface makes it 
possible to represent the solution of the bound-
ary-value problem (8) in the form 
 

 (31) 
 
where Z(r) = R(E – ROh)

–1(D + Igr) is the 
brightness distribution at the ground; E is the identity 
operator; 0

0 0exp( / ) ( )grI S s s       is the singu-

lar component of the incident radiation; Oh is a linear 
integral operator of the convolution type with the 
kernel O(h, r, s); O  O(z, r, s) is the point-spread 
function, satisfying the boundary-value problem 
 

 
 
related with  by a Fourier transform in the coordi-
nates r = {x, y}. The method is described in detail in 
Refs. 48 and 35. The functions (and the associated 
operators) appearing in Eq. (31) are related with the 

notion of photon trajectories and have a probability 
interpretation (Fig. 2). Thus 
 

 
 

are, respectively, the probabilities that a scattered 
photon from a point source on the surface will reach 
the observer or strike the surface. In Refs. 16 and 49 
analytical representations of the functions O(r) and 
A(p) are presented. 
 

 
 

FIG. 2. Nonintersecting photon trajectories. 
 

2.3. Numerical methods. Numerical methods 
consist essentially of calculating the specific functions 
in terms of which the solutions of the boundary-value 
problems are expressed. These include the point-spread 
function O, the optical space-frequency characteristic 
, the brightness of the haze D, the spherical albedo 
c0, the illumination of the lower boundary of the layer 
E, and other transfer functions. 

In the course of investigation of three-dimensional 
models different algorithms based on the Monte Carlo 
method,2,16,21,38,40,41, 47, 48,50,51 the method of itera-
tions,4,17,19,24,25,52 the method of spherical harmonics,53-55 
small-angle methods,37,39,42,56 the source-function 
method,2,49,54 and the method of discrete coordinates57 
have been developed. The most flexible method, which 
enables modeling with arbitrary optical parameters of 
the medium, is the Monte Carlo method. Another 
powerful computational tool is the method of integra-
tion of the transfer equation along characteristics with 
iterations and quadratures on a unit sphere; this method 
makes it possible to obtain simultaneously the values of 
the functions sought on all points of the difference grid 
in angular and spatial variables. Numerical investiga-
tions of most problems are now being performed pre-
cisely by these methods, whose accuracy can be con-
trolled. These methods have the drawbacks that the 
volume of calculations is relatively large, especially in 
the case of large optical thicknesses; this makes it nec-
essary to look for ways to accelerate the calculation and 
to employ approximations, which lower the computa-
tional accuracy. 
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Calculations in the small-angle approximation are 
of an approximate character and are valid for. strongly 
elongated scattering phase functions. The latest in-
vestigations of the small-angle approximation have 
made it possible to extend its range of applica-
tion.42,56,58 The accuracy of many algorithms based on 
the methods of spherical harmonics, source functions, 
and discrete coordinates is uncontrollable, and it is 
usually estimated with the help of comparative nu-
merical tests. Comparing the calculations performed 
by different numerical methods is standard procedure 
in many works. The most representative comparisons 
were made in Refs. 52, 54, and 55. The advantage of 
this group of methods is that they are relatively fast. 

The need for faster and more accurate algorithms 
is spurring further development. New methods and 
modifications which have already been t developed 
must be compared with existing calculations. 
 

3. INVESTIGATION OF THE TRANSFER 
PROPERTIES OF THE ATMOSPHERE 

 
According to Eqs. (25), (28), and (29) the at-

mospheric distortions consist of a superposition of 
atmospheric haze D, rereflection by the ground de-
scribed by the average factor 1

0(1 ) ,qc   followed by 

extinction in the atmosphere in accordance with E00 
and the action of . These factors taken together 
decrease the image contrast and reduce the real 
resolution of objects. The latter is a consequence of 
side illumination, caused by diffusion of photons in the 
atmosphere towards regions lying above weakly re-
flecting sections of the ground. 

The three-dimensional transfer functions of a 
scattering horizontally uniform layer is the optical 
space-frequency characteristic 
 

 
 
and the corresponding impulsive transfer characteristic  
 

 
 

 
 

where A and  are the amplitude and phase char-
acteristics. In the first investigations A was calcu-
lated using an approximate formula in the 
small-angle approximation.37 Then the function W 
was investigated for the model of a homogeneous 
atmosphere illuminated by the sun and bounded by a 
uniform underlying surface for different values of 0, 
f(s, s), and q. 15,17,19 Later the functions W, , and 
O were calculated by different numerical meth-
ods21,25,38,40,52,54,55,57 using models of a real atmos-
phere. Tables of values of the functions A and  for 
models of a continental aerosol are given in Refs. 52, 
54, and 55. 

Side illumination 
 

 
 
is a measure of the radiation reaching the detector from 
the direction s and reflected from sections outside the 
point of direct observation.49,59,60 In Refs. 14, 25, 44, 
45, and 49 side illumination from real natural for-
mations on the ground is investigated using test ob-
jects. Side illumination is important above dark ob-
jects surrounded by a bright background. This 
physically quite obvious fact has been evaluated 
quantitatively. The effect of the background depends 
on the dimensions of the object and the difference of 
the object and background albedo. The smaller the 
object and the larger the indicated difference, the 
stronger the side illumination is when the background 
is brighter than the object. 

A three-dimensional model of radiation transfer 
was apparently first used to analyze the interaction of 
radiation images of objects and the background in 
Ref. 14, where the brightness field of outgoing ra-
diation for observation at the nadir at wavelengths of 
 = 0.5, 0.65, 0.75, and 0.95 m and the values of the 
meteorological visibility range V = 3, 10, and 40 km 
with different ratios of the albedo of the object (80 m 
in size) and albedo of the background, was modeled. It 
was shown that the brightness of the radiation above 
wheat and soil varies by 25 and 80%, respectively, if 
the surrounding earth cover uniform with the object is 
replaced by grass. In Ref. 45 an example of the 
simulation of a two-dimensional field (a section with 
q  = 0.4, surrounded by a field with q  = 0.0) at the 

top boundary of the atmosphere ( = 0.55 m, 
0 = 0.64) is presented. This example shows clearly 
the effect of the smearing of the boundaries of the 
section with q  = 0.4 on the image. In this case Hb is 
virtually independent of the height of the aerosol 
atmosphere, but it increases as 0 increases. In a 
cloud-free atmosphere the horizontal diffusion of 
photons has virtually no effect on the image of natural 
objects that are brighter than the surrounding loca-
tion.2,61 Significant distortions appear when viewing 
through fog or semitransparent clouds.41 The effect of 
the phase characteristic  was investigated in Ref. 62. 
It was shown that in the case of a slightly turbid 
atmosphere the effect of the phase characteristic is 
negligibly small. Such estimates have not been made 
for the case of strong turbidity. Thus the 
three-dimensional model of radiation transfer has 
made it possible to extend the theory of transfer of 
brightness contrasts through the atmosphere. 

In the observation of extended objects the concept 
of contrast makes sense near the boundaries of these 
objects. This is why calculations of the profiles of the 
brightness of reflected radiation above the interface of 
two natural media with different albedos are interesting.  
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The exact formula for the profile of the brightness 
above the boundary of two isotropically reflecting 
half-planes whose albedos differ by q has the form 
 

 
 

 (32) 
 
where x  is the component of the displacement vector 
r  along the x axis. In the calculations performed in 
Refs. 11, 15, 17, 18, 22, 25, 43–45, 63, and 64 very 
diverse numerical schemes were employed. The 
computed and experimental LANDSAT images of the 
land-sea boundary were compared in Refs. 43–45. The 
theoretical calculations were confirmed experimentally 
and the results agreed well with one another. In this case 
this agreement was also obtained because the correct 
optical parameters of the atmosphere were chosen. The 
most detailed investigations for different models of the 
atmosphere were performed in Refs. 43 and 64. 

It is well known that the atmosphere contains 
mobile aerosol layers and semitransparent clouds. This 
is why it is of interest to investigate the possibilities of 
viewing through these scattering objects. In Ref. 59 
the effect of the position of a scattering layer on side 
illumination in viewing systems was clarified. In 
Refs. 40 and 41 the effect of the position of the scat-
tering layer between the object and the radiation 
detector on image quality was investigated. It was 
proved experimentally and theoretically that when the 
scattering layer moves from the source toward the 
detector the visibility of the object changes non-
monotonically. This phenomenon is described for both 
small and extended objects.60 Based on the obtained 
results it can be concluded that the position of aerosol 
layers in the atmosphere affects the quality of aero-
space images of the earth’s surface. 

The effect of the atmosphere on the spatial 
structure of a space image was modeled in Ref. 65. In 
Ref. 44 the frequency-contrast characteristic of the 
system detector-atmosphere, employed for estimating 
the real resolution of photographs, was calculated. It 
was shown that atmospheric turbidity (the aerosol 
optical thickness a = 0.5) reduced the 30-m resolu-
tion of thematic LANDSAT maps to 100 m. Therefore, 
when performing remote sensing and classification of 
fields with diameter d > 200 m it is pointless to 
improve the resolution of the sensor without intro-
ducing an atmospheric correction. In Refs. 66 and 67 
it is shown that the composite effect of atmospheric 
scattering and the nonuniformity of the surface albedo 
strongly affects the accuracy of the classification of 
fields on the earth’s surface. In some works the spatial 
distortions of the structure of the image were inves-
tigated with the help of the point-spread function O. 
In Ref. 68 the function O was calculated by the Monte 

Carlo method for a model of the real atmosphere 
(a = 0.16 and a = 0.332). It was found that the 
effect of O in simulating an image of an agricultural 
landscape was insignificant. The authors explain this 
by the fact that O has a sharp central peak and ex-
tended wings. But it is assumed that even an insig-
nificant spread of the image can result in degradation 
of classification. 

It is very difficult to implement numerical 
schemes in models with horizontal nonuniformity and 
polarization. The problem of radiation transfer in 
horizontally nonuniform clouds was first formulated 
without invoking the optical space-frequency char-
acteristic for the particular cases of the r dependences 
of ( )r  and ( ).r  The first four orders of the per-
turbation of the radiation brightness for reflection 
from a semi-infinite layer under conditions of isotropic 
scattering28 where obtained, the asymptotic behavior 
of the light reflection and transmission functions was 
determined for a horizontally nonuniform layer,30 and 
the reflectance of a horizontally nonuniform optically 
dense cloud with anisotropic scattering was calcu-
lated. It was found that the spatial distribution of the 
brightness field in the cloud can change the phase, i.e., 
the brightness maxima become minima and vice 
versa.31 The concept of the optical space-frequency 
characteristic has made it possible to make progress in 
the investigation of this multidimensional problem. 
This characteristic of a horizontally nonuniform cloud 
was calculated in Ref. 69. The nonlinear distortions of 
a space image owing to horizontal nonuniformity of a 
cloud-free atmosphere were estimated46 and a simple 
model of radiation transfer in a semitransparent cloud 
cover was developed.5 We note that a universal al-
gorithm, suitable for investigating horizontally non-
uniform objects with arbitrary optical thickness, has 
not yet been developed. 

Models with polarization still are of limited 
usefulness because they are unwieldy and because of a 
lack of experimental data. Nonetheless analysis of the 
models makes it possible to find simple relations 
between the degree of polarization of the radiation 
being measured and the optical parameters of the 
medium and the reflecting surface.70,71 These relations 
can be used to interpret and indicate the horizontal 
variations of the aerosol from measurements of I near 
the nadir. 
 

4. REMOTE SENSING PROBLEMS 
 

It is natural to use in remote sensing simple re-
lations, obtained by solving the direct problems of the 
theory of transfer, between the measured quantities 
and the quantity sought. Examples of such relations 
are the formulas relatingthe degree of polarization of 
the reflected radiation with the albedo of the surface or 
the degree of horizontal nonuniformity of the at-
mosphere. In many cases, however, inversion of the 
direct operator is a computational problem and it is 
necessary to solve inverse problems. An important 
application of three-dimensional models is the solution 
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of inverse problems of remote sensing concerning the 
reconstruction of the two-dimensional albedo, the 
scattering phase function, and the reflection matrix of 
the earth’s surface based on remote sensing data. These 
solutions represent a step in the processing of satellite 
data for the purpose of interpreting and determining 
the state of natural resources. 

The most detailed solutions of problems have been 
obtained under the assumption that the reflection of 
the earth’s surface is isotropic.6,8,16,17, 21, 25, 61,72,73 In 
Ref. 61 an iterative procedure was proposed for re-
constructing a stepped albedo, depending on one 
coordinate. This procedure was tested successfully in 
reconstructing the albedo near the land-sea boundary 
from LANDSAT photographs. In Refs. 8, 17, and 21 a 
solution was obtained for the two-dimensional case by 
the method of optical space-frequency characteristics. 
It was employed in modeling the block in which 
atmospheric corrections are made in the satellite im-
ages72 and in processing the NOAA satellite images.74 
An exact solution was obtained in Refs. 16 and 21: 
 

 (33) 
 
where 
 

 
 

 (34) 
 

 
 

 
 

According to Eq. (33) the solution is achieved in two 
steps. First the brightness at the ground Z(r) is cal-
culated using the fast Fourier transform algorithm. 
Then the convolution integral in Eq. (33) is calculated 
and the function q(r) is determined. The solution is 
stable with respect to measurement errors, and the 
well-known formulas are obtained for q(r)  q  = 
const. The effect of the input optics can be taken into 
account with the help of the formulas relating the 
angles of arrival with the points on the image. The 
one-dimensional problem of reconstructing q  was 
solved in Refs. 7, 8, and 25, where the corresponding 
numerical algorithms were developed. An algorithm 
for reconstructing ,q  taking polarization into ac-
count, is given in Ref. 21. 

Algorithms for reconstructing the average albedo 
taking into account the anisotropy of the reflection by 
the surface were developed in Ref. 74. A correct 
formulation of the problem of determining the 
brightness coefficient of the underlying surface in-
cludes the question of reconstructing the reflection 
phase function. The corresponding inverse problem 
was studied in Ref. 13. The solution of this problem 
involves a stereo survey or angular measurements 
performed with a scanner. 

The method of multiple rereflections makes it 
possible to reduce the problem to the solution of two 
equations 
 

 
 

 (35) 
 
and 
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where 
 

 
 

 
 

 
 

 
 

 
 

 
 
In the case (r, s, s0) = q(r) the formulas (35) and 
(36) transform into Eqs. (33) and (34). In the case 
when the brightness coefficients are arbitrary the 
multidimensional equations (35) and (36) must be 
solved simultaneously. A simpler solution is to employ 
the approximate relation (26) in the case of a uni-
formly reflecting bottom or the relation (30) in the 
case when the albedo of the ground is nonuniform. 
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Algorithms for solving Eqs. (35) and (36) have not yet 
been developed. Analogous arguments are valid for  

vector problems. The question of reconstructing the 
reflection matrix was studied ..in Ref. 36. However 
three-dimensional problems with polarization are still 
far from practical application. In addition, taking 
polarization into account improves the accuracy of the 
calculations of the brightness field of the upward 
directed radiation, on the average, but not more than 
1%.9 As a result, in practice, polarization problems are 
of less interest than scalar problems. 

Real subjects of an aerospace survey have a relief 
in which one element of the location greatly pre-
dominates over other elements. As a result some 
elements are shaded and distortions are introduced 
into the. reflected scattered radiation. These effects 
can be approximately taken into account in calcula-
tions of the brightness fields. Accurate solutions of the 
transfer equation in a layer with an uneven lower 
boundary have not yet been obtained. 
 

CONCLUSIONS 
 

The complexity of three-dimensional models of 
solar-radiation transfer in the atmosphere, which can 
be used to calculate light fields taking into account the 
horizontal nonuniformities of the brightness coeffi-
cients of the ground in a scattering medium, has now 
reached the level required for applications. 
Three-dimensional models are used in remote sensing 
primarily for developing algorithms for reconstructing 
the reflective characteristics of the earth’s surface from 
remote sensing data. These algorithms, are employed 
for interpreting natural objects in the process of digital 
video information processing. 

The solution of the problem of reconstructing the 
two-dimensional albedo of an isotropically reflecting 
ground from the space image has now been solved 
exactly. Different modifications of the 
three-dimensional model of radiation transfer above a 
surface with a nonuniform albedo have been used for 
experimental processing of data obtained from Soviet 
and nonsoviet satellites. The general conclusion of 
these investigations is that taking into account the 
optical transfer function of the atmosphere makes it 
much likely that the observed objects will be correctly 
identified. Versions of digital models of the atmos-
pheric correction block for the video information 
processing system have„now been developed. 

Because scanning systems are used extensively the 
problem of developing effective algorithms for taking 
into account surface reflectance anisotropy on the basis 
of the general formulation of the inverse problem 
remains open. Radiation transfer above an uneven 
surface has not been investigated much. 
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