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Based on the transfer equation for the intensity and the parabolic equation for the 
eikonal, a system of ordinary differential equations is obtained which describe the sta-
tionary propagation of axially symmetric light beams in media with an arbitrary 
nonlinearity under conditions of aberrational distortion of any prescribed order. Using 
the found recursion formulas relating the coefficients of series expansions over basic 
elementary functions of infinite series, the obtained system of equations is adapted for 
describing the wave aberrations up to the sixth order that occur during the propagation 
of Gaussian beams through media with a cubic nonlinearity and under conditions of 
thermal blooming. An analysis is carried out of the integrals of motion of the medium and 
of the differential equations themselves. 

 
 

An analysis of numerical solutions of the para-
bolic equation describing light propagation in 
nonlinear media indicates the necessity of taking into 
account, besides the nonaberrational distortions, ad-
ditional nonlinear aberrational distortions of spatially 
limited beams.1,2 Nonlinear aberrations show up not 
only in near-focal regions, where their role is decisive, 
but because of the cumulative nature of the aberrations 
the behavior of the beam can differ strongly from the 
predictions of aberration theory already after the first 
nonlinear length.3 

Investigations of nonlinear aberrations based on 
the parabolic partial differential equation represent a 
mathematically complicated problem and, hence, 
require the use of numerical methods. At the same 
time, numerical methods lack the advantages of an 
analytical description, which gives the most complete 
description of the phenomenon. The first attempt to 
carry out an aberrational analysis was undertaken in 
Ref. 4. However, many problems concerning both 
general aberrational methodology and the possibility 
of a detailed investigation of aberrational distortions 
of beams in media with an arbitrary nonlinearity 
mechanism remain open. In particular, the structure of 
the transverse beam profile, which was first elucidated 
in Ref. 5 on the basis of the approximation of spherical 
aberrations, remains unexplored. 

In the present paper an aberrational theory of 
thermal blooming of arbitrary axially symmetric wave 
beams is presented, with the nonlinearity mechanism 
of the medium in general not specified. The theory 
generalizes the nonaberrational method and enables 
one, after passing over to a system of ordinary dif-
ferential equations, to substantially simplify the use of 
numerical solution methods and make them effective. 
An aberrational analysis constructed on the basis of 
this theory has made it possible to investigate in detail 

many propagation features which escape the nona-
berrational approach, such as limitation of the 
transverse size of Gaussian-1ike beams, the occurrence 
of a complicated annular structure of the beam cross 
section, the formation of an aberrational ring in a 
defocusing medium,5 and so on. 

Let us suppose that beam trajectories (z) are 
known for an axially symmetric beam as functions of 
.the longitudinal coordinate z. Then an addition to 
the eikonal of a plane wave s(r) on the circles 
r = (, z) may be calculated using the relation 

.
s d

dz
 


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 For a beam with a parabolic wavefront we 

introduce the variable 
0

( ) ,
( )

r
a f z


   where a0 is the 

initial characteristic beam radius and f(z) is its 
current dimensionless radius without aberrations. 

Since 0 0 0 ,
s d

a f a f a f
dz

       
 integration gives 

 

 (1) 
 

where s0(z) is the additional phase shift due to the 
change in the wave propagation velocity. 

In accounting for the aberrations the variable (r) 
is determined by a set of N dimensionless aberrational 
functions An(z) = {Ap(z)}, 1  p  N (N = 1, 2, ). 
Let the derivative A characterize (provided that f and 
all of the Aq, 1  q  N, q  p, are constant) the 
contribution of the distortions to the beam wavefront 
that are described by the power of the transverse 
coordinate 2(p+1) (as will follow below, it does not 
coincide with the real and imaginary parts of the 
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function Ap+1 in the expansion of the complex phase of 
the field in Refs. 1 and 4). Then f takes on the 
meaning of an aberrational function of zero order and 
the integrand in Eq. 1 can be represented in the form 
 

 
 
where Fq(Mq–1) are positive definite monotonic 
functions ensuring the indicated property of Ap, and 
the arguments are defined recursively using integrals: 
 

 
 

 (2) 
 

 
 
n(z) = An(z) + Ñn, Ñn = {Ñq} is a fixed vector in the 
space of the n aberrational functions; Cq (1  q  n) 
are arbitrary constants; n–1 is the greatest zero of the 
function /Fn() (n = 1, 2, , N–1). 

Expression (1) allows one, using the method of 
characteristics and taking into account the representa-
tion of d/dz, to find both integrals of the transfer 
equation 
 

 (3) 
 
( = (/õ, /y)) for the intensity I of a bean field 
in a dissipative medium, characterized by an absorp-
tion coefficient , in the following form: 
 

 (4) 
 

 (4a) 
 

where MN is given by formula (2) with n = N. Ac-
cording to formula (2) 
 

 
 

 (5) 
 

hence integral (4a) can be written as 
 

 (4b) 
 

Determining the interrelationship between inte-
grals (4) and (4b) at z = 0 for a beam with axial 
intensity I0 and initial profile 
 

 (6) 
 

0 = (, 0) = /à0, f(0) = 1, we àãå led to the law 
 

 
 

 (7) 
 

where the notation 
 

1
N NO N NO( ; ; ) ( ( ; ); )N N NM M         is used for the 

function 1
1(const ; ),N NM    the inverse of the func-

tion on the left side of Eq. (4) taken at NO = N(0), 
and the identically valid equality 

N NO NO N( ( ; ; ); ) ( ; )N N NM M         is taken into 
account. 

Let us turn now to the parabolic equation for the 
wave eikonal 
 

 
 

 (8) 
 
in which the real nonlinear additional term 1n  in the 

medium dielectric constant (0 is its unperturbed 
value) depends on the intensity distribution of the 
beam, and k = 2/. Substituting expression (1), 
which with the help of Eq. (5) takes the form 
 

(1a) 
 
in Eq. (8) and cancelling out like terms, we find 
 

 
 

 
 

 
 

 (9) 
 
where 
 

 (10) 
 
In Eq. (9) and everywhere below the equality 

0
k

i
i j

c


  is assumed to hold for k < j. 
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Since one can choose the new independent 
variable to be not more than the second power of the 
radial coordinate if it is not to introduce irrationality 
in the transformation of Eqs. (3) and (8), the ex-
pansion of the eikonal of the axially symmetric beam in 
series (1a) should contain only even powers of . 
Hence, relating the order p of the function Ap with the 
lowest power 2(p+1) of the aberrational distortions of 
the wavefront corresponding to it, we conclude that 
the asymptotic form of the function Wp(; p–1) 
entering into Eq. (1a) as  – 0 is 2(p+1), and integrals 
(2) in accordance with Eq. (10) can be represented as 
 

 
 

 (2a) 
 

where Rp(x; p) is some in general irrational function 
of its arguments, and Rp(0; p) = 1. Since the ab-
errations 2(p+1) are characterized only by pA  (see 

Eg. (1a)), asymptotic form (2a) remains the same as 
for p–1  0, so that in addition Rp(x; 0) = 1. 

Substitution of Eq. (2a) in Eq. (2) and com-
parison of both sides of the equalities as  — 0 give 
 

 
 

 
 

By differentiating the first equality, we find 
F1() = (3)/2 and 0 = , and from the second it 

follows that 1/( 1)1
( ) 1 n

nF
n

       
 

 and n–1 = 0. This 

completes the determination of the integrals in Eq. (2): 
 

 
 

 (2b) 
 
and the recursively defined function definition (11) (this 
fact will be used below). Note that inversion of formulas 
(16)—(17) leads to a series expansion of the exponential 
function of an infinite series and the combination of 
formulas (14)—(17) enables one to obtain the expansion 
of any other function of an infinite series. 

The intensity (7), according to Eqs. (3) and (8), 
does not depend on the initial value ANO = AN(0), and 
it is necessary to set NO = 0 in Eq. (7) and choose 
the fixed vector in N(z) on the basis of the condition 
CN = –ANO. Upon inverting the integral (2a) at 
p = N with respect to  = , taking relation (11) into 
account, and specifying the thusly formed function 

( ; ) ( ; ; 0)N N N N        in the profile (7) by setting 

N(z) = AN – ANO, we find 
 

 (18) 
 
Finally, combining formulas (2a), (2b), and (18), we 
establish the relationship 
 

 (19) 
 
and combining (11) and (18) we obtain 
 

 (20) 
 

Expression (18) allows us with the help of 
Eqs. (14)–(17) to expand the profile (7) in a series: 
 

 (7a) 
 

 
 

 
 

 
 

 
 

where the numbers Qm determine the form of the 
initial profile of the beam (6), 

2 2
0 0

1

( ) (0) 1 .m
m

m

Q



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 

  In particular, for the 

 

 
 

 (11) 
 

whose Maclaurin series expansion 
 

 (12) 
 

is given in terms of readily calculated coefficients 
 

 (13) 
 

With the help of Eq. (13) the coefficients of the 
series expansion of the th power of this function 
( à 0), 
 

 (14) 
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are also expressed by recursion relations: 
 

 
 

 (15) 
 

Assuming in Eqs. (14)—(15) that ( ) ( ; )m
p mR     

( ) ( )m
p mL   and taking the logarithm of Eq. (14) and 

then the limit  — 0, we obtain, taking Eq. (12) into 
account, the series expansion of the natural logarithm of 
the function Rp(x; p) 
 

 (16) 
 

where 
 

 (17) 
 

The coefficients ( )( ; )m
p mR    and ( )( )m

p mL   pos-

sess property (13) and expansions (14) and (16) are 
valid (in the convergence regions) for arbitrary func-
tions R(x), irrespective of profile of the most general 
hyper-Gaussian form 
 

 (21) 
 

Inverting Eq. (17), we obtain 
 

 
 

Expressions (19)—(20), from which it follows that 
 

(22) 
 

determine the nature of the interrelation between the 
eikonal and the beam intensity. According to Eq. (10) 
the field phase discontinuities caused by the local 
stationarity on the coordinate  of any m(m  1) of the 
N integrals (2a) occur in the z plane on circles of 
radius p = p(z), given by the equations 
 

 
 

and the field itself disappears on these circles ac-
cording to Eq. (22) (see Eq. (7)). In other words, the 
beam disintegrates into m independent concentrically 
arranged parts which define its annual structure, each of 
which has in general its own aberrational distortions. 

Bearing in mind that the parts of the split up 
beam can be described independently, we assume the 
following conditions to be fulfilled 
 

 (23) 
 

which ensure the continuous variation of the eikonal 
throughout the entire region occupied by the beam, 
except for its boundaries, where conditions (23) can be 
violated when p = N. Conditions (23) do not pre-
clude a description of the annular structure of the 
beam if the field between the rings does not fall to 
zero. When conditions (23) are fulfilled, the function 
(10) can be represented by a convergent series 
 

 (24) 
 
in which 
 

(25) 
 
are calculated taking into account formulas (2a) and 

(12), using the coefficients ( )(–1; )m
p mS   of the expan-

sion 
 

 (14a) 
 
analogous to expansion (14), namely the expansion of 
the reciprocal power of the function 
 

 
 

defined by the recursion relations (15) with  = –1 
and R replaced by S. 

The given aberration theory takes account of the 
components up to the 2(N + l)th power inclusive of the 
radial coordinate in the expansion of the nonlinear 
additional term in the dielectric constant of the medium: 
 

 (26) 
 

Substituting Eqs. (9) and (26) in Eq. (8), carrying out 
the necessary transformations, taking formulas (18), 
(21),. and (24) into account, and collecting coefficients 
of the same power in the coordinate  (or ), we arrive at 
an equation for the unknown functions s0, f, and AN: 
 

 
 

 
 

 
 

 
 

 (27) 
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(p = 1, 2, , N), where we have made use of the 
following notation: 
 

 
 

 (28) 
 

( )( )p
N p   are the expansion coefficients of the function 

 

 (16a) 
 

calculated accordingto the recursion formula (17) 
(after replacing L by  and R by G). 2

0diffR ka  is the 

diffraction length of the beam. 
In order to calculate the coefficients 2 ( )s z  in 

Eqs. (26)–(27), it is necessary to specify the nonlin-
earity mechanism of the medium. For example, in the 
case of a medium with cubic nonlinearity (2) ,nl I    
using expansion (7a), we find 
 

 
 

 (29) 
 

where the nonlinear length Rnl is equal to 
(2) 1/2

0 0 0( / ) .nlR a I    For a medium with a thermal 

nonlinearity ( / ) [ ( , ) (0, )],nl d dT T z T z       
caused by a temperature field T(r) which is nonuni-
form along a cross section of the beam, similarly, by 
solving the heat conduction equation we obtain 
 

 
 

 (30) 
 

For thermal blooming 0 0, 4 / ,nl thR ê d dT I    where 

ê is the coefficient of thermal conductivity of the 
medium. 

The system of equations (27), like Eqs. (3) and 
(8), has two integrals of motion, independent of the 
longitudinal coordinate z (Ref. 6), namely, the in-
tegral of the total1 power of the beam in a nondissi-
pative medium 
 

 (31) 
 

and the second integral 
 

 (32) 
 

where the function 
 

 
 

Substituting expression (7) in Eq. (31) and 
taking into account that the beam power 

2 1 2
1 0 0 lim

0

(0) ( ) (0),P a I d


           is determined by 

its limiting initial radius 0lim lim(0) (0),a a   at which 
2
lim( (0)) 0,    the current limiting radius 

alim(z) = a0f(z)lim(z) is found from the equation 
N(lim(z); N) = lim(0), or in accordance with re-
lations (11) and (18) 
 

 
 

 
 

The second integral (32) determines the relation 
between the functions f and AN and their first de-
rivatives. For example, in the case of a medium with 
cubic nonlinearity, this relation is given by the 
equation 
 

 
 

 
 
in which 
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0 (0; (0)),i i Ng g A  and the function 2( ; )N N    is 
determined after inverting Eq. (18). Equation (33) 
generalizes the first integral of the equation for the 
dimensionless width of a Gaussian beam 
f(z) = a(z)/a0 in nonaberrational theory6 and 
transforms into the latter when nonlinear aberrations 
are negligible (g1 = g3 = g4 = 1, g2 = 0). 

For an illustration. let us consider the description 
of wave aberrations up to the 6th order (N = 2), lim-
iting ourselves to beams with Gaussian profile (B1 = 1; 
Âm = 0; m  1). Using formulas (14), (14a)–(17), 
(25), and (28)–(30) to calculate the coefficients 

( )
1( ),p m

p pW 
  up, and vp,q, and substituting them in 

Eq. (27), we arrive at the following system: 
 

 
 

 (27a) 
 

 
 

where 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

and the value  = 0 corresponds to the case of a medium 
with cubic nonlinearity, and  = 1 corresponds to 
thermal blooming. The upper signs in Eq. (27a) are 

taken when (2) > 0 0 ,
d
dT
  

 
 and the lower ones — 

when (2) < 0 0 .
d
dT
  

 
 

Neglecting aberrations (A1 = A2 = 0), the first 
equation of system (27a), for  = 0, transforms into 
an equation for the dimensionless beam width in a 
cubic medium6 and, for  = 1, into an equation for the 
same function for the case of thermal blooming.7 
Taking only spherical aberrations (A1  0, A2 = 0) 
into account, the first two equations of system (27a) 
for  = 0 coincide with the equations for the functions 
f(z) and (z) of the aberration theory of the same 
kind.5 As for the function f(z) in the aberration theory, 
it cannot be given such an obvious interpretation as in 
the nonaberrational approximation, nor .can it be 
determined by a function that characterizes the 
variation of the intensity on the beam axis. 

An analysis of equations (27a) has shown that for 

self-focusing, (2), 0,
d
dT
   

 
 aberrational beam dis-

tortions develop more rapidly in a medium with cubic 
nonlinearity than in that with a thermal one; while for 

defocusing, (2), 0,
d
dT
   

 
 on the contrary, the ab-

errations that arise for the greater extent remain in 
thermal blooming. Hence, the wave properties of a 
beam with regard to the influence of aberrations are 
manifested in nonlinear media of these two types in a 
different way, in spite of an identical mathematical 
description. 
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