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Regularized algorithms for solving numerically an integral equation of the convo-
lution type that permit taking into account, together with the usually employed a pri-
ori information about the smoothness of the reconstructed function, data on the range 
of the function are studied. The effect of taking data of this type into account on the 
quality of reconstruction is studied in a numerical experiment. An iteration algorithm 
for reconstructing positive-definite functions is proposed and methods for adaptation 
under conditions of a priori uncertainty are examined. 

 
 

INTRODUCTION 
 

One of the inverse problems encountered most 
often in practice is the problem of solving an equa-
tion of the convolution type 
 

 (1) 
 

for the function u(t), where A denotes the convolu-
tion operator with kernel h(t – ), which is a func-
tion of the difference of the arguments t and , and 
f(t) is the experimentally measured function. 

The improper nature of this problem makes it 
necessary to employ a priori information about the 
solution, most often consisting of the assumption 
that the function sought is smooth. The smoothness 
of the solution is characterized quantitatively by the 
so-called stabilizing functional of order p1: 
 

 
 

 (2) 
 

where 
 

 (3) 
 

qn are nonnegative coefficients, qp > 0, the tilde on 
u denotes the Fourier transform, and  is the angular 
frequency. The regularized solution of Eq. (1) is found 
by minimizing the functional (2) with a given (in a 

quadratic metric) level of error on the right side of 
(1). This leads to the problem of finding the minimum 
of a smoothing functional with respect to u (Ref. 1) 
 

 (4) 
 

For a given value of the regularization parameter 
 > 0. The solution of this problem is found by find-
ing the inverse Fourier transform of the function 
 

 (5) 
 

The optimal regularized solution (with mini-
mum mean-square error of reconstruction) can be 
found if the spectral power density Ru() of the 
function sought and the spectral power density 
R() of the error (t) in the measurement of the 
right side of Eq. (1) are known by setting in Eq. (5) 
 

 (6) 
 

This solution is identical to the result of applying 
Wiener’s optimal linear filtering.1 The forms of a 
priori information that were examined are very gen-
eral and the required quality of reconstruction can-
not always be achieved. Thus is many inverse prob-
lems the region of admissible values (RAV) of the 
solution is known a priori. In particular, the solu-
tion can be positive-definite, and the appearance of 
negative values results in a physically meaningless 
solution.2,3 In this case the minimum of the mean-
square error in reconstruction is no longer a criterion 
for the algorithm to be optimal, and the problem of 
absolute minimization of the functional (4) becomes 
a conditional problem with constraints, in the form 
of inequalities, on the function u(t). In its general 
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form such a problem cannot be solved analytically, 
and this makes it necessary to use very laborious 
numerical methods of ainimization.4 In this process 
the volume of calculations increases indefinitely as 
compared with the algorithm (5), realized in the 
frequency domain. 

In this work we examine some methods for tak-
ing into account a priori assumptions about the 
range of the solution when inverting Eq. (1), the 
effect of these assumptions on the accuracy of recon-
struction is investigated in a numerical experiment, 
and an iteration algorithm for reconstructing posi-
tive-definite functions, which makes it possible to 
perform the calculations more rapidly than in the case 
of the numerical methods of minimization, is proposed. 
 

EFFECT OF A PRIORI CONSTRAINTS  
ON THE FUNCTION U(t) OF THE QUALITY 

OF RECONSTRUCTION 
 

The simplest method for taking into account a 
priori restrictions in the form of inequalities 
 

 (7) 
 

is numerical minimization of the functional (4) as a 
function of N variables u(t1), , u(tN) taking into 
account Eq. (7), but for large N this problem is very 
time-consuming. A significant advantage is gained by 
reducing the problem with constraints to a problem 
of unconditional minimization.4 In this work the con-
straints (7) were taken into account by using succes-
sively bilinear and logarithmic transformation of the 
range (, ) of the function u sought3 (to simplify the 
notation we omit the arguments of the functions) 
 

 
 

 (8) 
 

which maps this region In a single-valued fashion 
onto the entire number scale z  (–, ), and in 
addition the ratio a/ñ can be arbitrary. The inverse 
mapping has the form 
 

 (9) 
 

Substituting Eq. (9), using Eq. (8), into Eq. (1) and 
constructing Tikhonov’s smoothing functional for 
the nonlinear, with respect to z(t), integral equation 
obtained In the process, we arrive at the problem of 
unconditional minimization of 
 

 
 

(10) 
 

Numerical minimization of Eq. (10) was performed 
using a package of applied programs of a dialogue sys-
tem of optimization (DISO-BÉSM), developed at the 

Computational Center of the Academy of Sciences of 
the USSR,4 with the function z(t) given on a uniform 
grid of 16 points t1. The search for a minimum by the 
method of conjugate gradients required of the order of 
20 min on a BÉSM-6 computer. The results of the 
model calculations for different forms of the a priori 
constraints on u(t) are presented in Fig. 1. The model 
function u(t) in the form of a sum of two Gaussian 
curves is presented in Fig. 1a. Figure 1 also shows the 
function f(t), obtained from Eq. (1), where h(t) was 
assumed to be a Gaussian curve, and the results of 
reconstruction of u(t) according to Eq. (5) (neglecting 
the a priori constraints) with M() = 1 and two val-
ues of the parameter , chosen empirically. Figure 1b 
shows the results obtained by minimizing the func-
tional (10) for three variants of the a priori constrains 
of the form (7): 

a) (t) = 0, (t) –  (positive-definiteness of 
the solution); 

b) (t) = 0, (t) = umf(t)/fm (the index m de-
notes the maximum value and it is assumed that um 
is known); and, 

c) (t) = 0, (t) = um at t0  t  T, (t) – 0 at 
t < t0 , t > T (finite range of u(t), determined by the 
interval [t0, T], where f(t) exceeds the error level). 
 

 
 
FIG. 1. The effect of a priori information about 
the solution on the quality of reconstruction (in 
the absence of noise): (a) 1) the model function è 
it); 2) the right side f(t) of the starting equation; 
3, 4) reconstruction of u(t) by Tikhonov’s method 
with  = 10–5 and  = 10–10; (b) reconstruction of 
u(t) by direct minimization of the smoothing 
functional with constraints of the type a, b. and ñ 
given in the text (curves 1, 2, and 3). 

 
The regularization parameter was equal to 

 = 10–5 in all cases. From comparison of the results 
presented in Figs. 1a and b it can be concluded that 
the quality of the solution is significantly improved 
if the RAV of the function sought is taken into ac-
count. This improvement is manifested in the fact 
that there are no negative values of the solution and 
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the fine structure of the solution is reconstructed in 
greater detail. As one can see from Fig. 1b. the form 
of the a priori constraints on u(t) does not affect the 
reconstruction very strongly, and in the present 
model problem the condition that the solution be 
positive definite is sufficient. At the same time, the 
improvement in the quality of reconstruction in-
volves large amounts of computer time. An iteration 
algorithm for inverting an equation of the convolu-
tion type, taking into account the positive-
definiteness of the solution, is described below. This 
algorithm makes it possible to reduce by many fac-
tors the volume of calculations as compared with the 
methods of direct minimization. 
 

ITERATION ALGORITHM  
FOR RECONSTRUCTING  

POSITIVE-DEFINITE FUNCTIONS 
 

Let the initial approximation ( )u t  to the posi-
tive-definite solution of Eq. (1) be known. We shall 
represent u(t) in the form 
 

 (11) 
 

We transform by means of the transformations (8) 
and (9), where b = 0 and ñ = 0, to the new function 
sought z(t), in such a way that 
 

 (12) 
 

Substituting Eq. (12) into Eq. (1) we obtain a 
nonlinear equation for the function z(t) whose val-
ues fall into the range from – to +. Assuming 
that ( )u t  is close to the exact solution u(t) and z(t) 
is close to zero because of Eq. (12), we obtain 
 

 (13) 
 

as a result of which the nonlinear equation is lin-
earized 
 

 (14) 
 

and its regularized solution can be written, analo-
gously to Eq. (5), as 
 

 
 

 (15) 
 

where 
 

 (16) 
 

Iterative refinement of the solution is performed ac-
cording to the scheme 
 

 
 

 (17) 
 

starting with the zeroth-order approximation (0) .u u  
 

 
 

FIG. 2. Iterative reconstruction of positive-
definite functions, (a) Reconstruction in absence 
of noise; 1) the model function è(t); 2), 3) the 
results of reconstruction after the first and tenth 
iterations; (b) reconstruction with 1% noise on 
the right side of the starting equation; 1) ze-
roth-order regularization; 2) optimal linear fil-
tering; 3), 4) taking into account the positive-
definiteness of u(t) after 100 and 400 iterations. 

 
To investigate the quality of the reconstruction 

and the rate of convergence of the algorithm we per-
formed a numerical experiment, whose results are 
presented in Fig. 2. The model function u(t) was 
chosen to be the same sis in Fig. 1 and the modulus 
of the solution obtained according to (5) with 
M()  = 1 and  = 10–15 (see Fig. 1a, curve 4) was 
chosen as the zeroth-order approximation ( );u t  the 
zero values of the initial approximation were re-
placed by small numbers. The results of using the 
iteration algorithm (15)–(17) are presented in 
Fig. 2a (after one and ten iterations). Figure 2b 
shows the results of reconstruction in the presence of 
an additive error (t), distributed uniformly in the 
interval [–0.01 fm, 0.01 fm] on the right side of 
Eq. (1). The curve 1 was obtained with M() = 1 
and the parameter  determined from the mismatch; 
curve 2 was obtained using Eq. (6) with R and RU 
calculated numerically for the functions (t) and 
è(t). The curve 3 and 4 represent the results of the 
iteration algorithm after, respectively, 100 and 400 
iterations (the zeroth-order approximation was as-
sumed to be constant and equal to the average value 
of the model function u(t)), and R and RU were 
also assumed to be known. We shall investigate be-
low the effect of uncertainties in the spectral power 
densities of the solution and the noise on the accu-
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racy of reconstruction and the possibility of adapta-
tion of their parameters. 
 

RECONSTRUCTION WITH A PRIORI 
UNCERTAINTY 

 

A priori information about the solution and the 
noise in the form of R and RU is usually not avail-
able. Nonetheless they can be estimated from the 
experimental data using the equations relating the 
statistical moments of the measured function, the 
solution, and the noise.5 In application to an equa-
tion of the convolution type we can obtain from the 
equations for the correlation functions6 
 

 (18) 
 

We shall assume that the noise (t) is white noise 
with known variance 2

  and that the solution is a 
stationary exponentially correlated Gaussian process, 
which has a spectral power density of the form 
 

 (19) 
 

where the constants k1 and k2 can be expressed in 
terms of the parameters of the correlation function 
of this process.7 We note that such a representation 
of corresponds to using a first-order Tikhonov stabi-
lizer (3).5 Substituting Eq. (19) into Eq. (18) and 
solving the equation obtained for k1 and k2 by the 
method of least squares, we obtain 
 

 (20) 
 

 (21) 
 

where 
 

 
 

 
 

The results of numerical modeling using the 
adaptive estimates (20) and (21) of the parameters 
Ru are presented in Fig. 3. Variants with adaptation 
in one parameter k1 (k2 = 0), which corresponds to 
zeroth-order regularization (Fig. 3a), and in both 
parameters k1 and k2 (Fig. 3b) were studied. The con-
ditions of the numerical experiment were the same as 
for Fig. 2b. The curves 1, 2, and 3 in Fig. 3 corre- 

spond to the results of reconstruction after 10, 100, 
and 200 iterations. 
 

 
 

FIG. 3. Reconstruction with a priori uncertainty: 
1), 2), 3) results of reconstruction after 10, 100, 
and 200 iterations with 1% noise on the right side 
of the starting equation; a) zeroth-order regulari-
zation (adaptation in one parameter); b) first-
order regularization (adaptation in two parame-
ters). 

 
In conclusion we note that the implementation of 

the above-described algorithm using a standard FTT 
procedure required about three seconds of BÉSM-6 
computer time for one iteration (all functions were 
represented on a grid with 128 points). This indicates 
that this algorithm is obviously more efficient than the 
direct-minimization methods.  
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