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We determine the optimum ratio of the radius of deformation to the distance be-
tween adjustment points in an adaptive mirror with Gaussian response function which 
will provide the best approximation to various types of wavefronts. 

 
 

A flexible adaptive mirror is considered the 
most important element in systems for correcting 
distortions in wavefronts. One of the major issues 
which arises in the design of such mirrors involves 
choosing the types of response function, since this 
problem is closely related to the issue  of the accu-
racy to which the wavefront can be approximated 
and, thus, the possibility of choosing the minimum 
number of independent mirror control channels re-
quired to achieve a given correction accuracy. 

There have been numerous papers on choosing the 
form of response function for active mirrors.1,2,etc. 
These studies lead to the conclusion that zone-based 
control with a Gaussian response function 
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(where 


 is the vector of nor-
mal coordinates determining the position of a given 
point relative to the center of an adjustment point 
and r is the radius of deformation for that section of 
the surface of the adaptive mirror) minimizes the 
approximation error for a wide variety of wavefront 
types. We shall discuss the issue of selecting the 
optimum ratio of the radius of deformation r to the 
distance between adjustment points  for a given 
response function. 

Due to the fact that distortions in the wave-
front are frequently described In terms of a set of 
known phase distributions (Zernicke polynomials),3 
we shall first study the functional qualities of the 
response function with respect to statistical correc-
tion of the phase distortions. With this aim in view, 
we solved the problem of obtaining the best ap-
proximation in the root-mean -square sense using the 
first four Zernicke polynomials ( ).jZ 


 The error of 

approximation was calculated according to the fol-
lowing formula: 
 

 
 

where S is the area of the aperture and a1 is the am-
plitude of the control signal for the ith adjustment 
point. The adjustment points were assumed to be 
distributed over the circular aperture in a 2-D square 
lattice with spacing . 

Plots of the approximation error incurred by 
approximating the Gaussian response function by the 
first four Zernicke polynomials are shown as a func-
tion of the ratio r/ in Fig. 1. We see that the mini-
mum approximation error using the Zernicke poly-
nomials occurs for r/ = 0.6. 
 

 
 

FIG. 1 
 

Under real conditions, the incoming wavefront 
is a random field, so that it does not always make 
sense to approximate Zernicke polynomials or any 
other system of functions using various response 
functions. It would make more sense to determine 
how well the response function of the adaptive mir-
ror can compensate for random phase distortions due 
to a turbulent atmosphere. Since we must deal with 
an Infinite set of random functions and compensate 
for distortions of various types, a statistical ap-
proach must be used in carrying out the analysis. 

Our basic hypothesis for this study is that an 
adaptive mirror is a spatial-frequency filter.2,4 In this 
case, the residual phase error in the correction  
due to the limited bandpass of this filter will then 
be given by 
 

 (1) 
 

where ( ) 


 is the phase distribution at the entrance 
aperture. The variance of the residual phase correc-
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tion error may be determined by integrating over 
spatial frequency: 
 

 (2) 
 

where ( )к


 is the spectral density of the phase dis-
tortions, ( )кf к


 is the Fourier image of the response 

function, and к

is the spatial frequency vector. 

Equation (2) was integrated numerically on a 
computer for the case of phase fluctuations due to at-
mospheric turbulence, where the spectral density is 
given by5 
 

 
 

where 0 is the radius of the spatially-coherent region. 
The results of the integration indicated that the 

dispersion of the residual phase error is given by the 
following relation (to good approximation): 
 

 
 

where  is a coefficient whose values are given for 
various values of r/ in Table I. A typical family of 
dispersion curves for the residual phase error as a func-
tion of (/Q)S/3 is shown in Fig. 2. We see that the 
best approximation to the random phase errors with a 
Gaussian response function occurs for r/ = 0.6. 
 

TABLE 1 
 

 
 

Our research leads to the conclusion that in de-
signing an adaptive mirror, the designer must take 
into account the fact that the best approximation to 
a variety of wavefront distortions is achieved using a 
Gaussian response function and a ratio of 0.6 be-
tween the surface deformation radius and the dis-
tance between adjustment points. 
 

 
 

FIG. 2 
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