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The summation method of the divergent series, known as “Generalized Euler transform” is 

considered and applied to the simplest case: calculation of the perturbation theory series for two-
atomic H2 molecule. In calculations, the following kinds of approximants were used: the formula for 
energy levels of the Kratzer oscillator; Pade simplest approximants, Pade – Borel and Pade – Hermit 
approximants; effective characteristic polynomials. The computations were made for the ground state 
energy level. Comparisons of obtained results with the fitting data were conducted, and predictions 
were made for energy levels, which were not used in the fitting. 

 
 

Introduction 
 

For solution of many problems of spectroscopy, 
astrophysics, and flame physics, the determination of 
the levels of energy and wave functions of highly 
excited vibrational-rotational (VR) states of molecules 
is required. Nowadays it remains still impossible to 
conduct precise variation calculations for highly 

excited states of polyatomic molecules because of 
significant calculation difficulties. In its turn, the 
method of effective Hamiltonians uses an expansion 
in series, which diverge at a sufficient degree of 
vibrational or rotational excitation. Therefore, the 
using of special summation methods is necessary.1 

At present there is quite extensive literature on 
the development and application of summation 

methods for calculation of VR spectra of molecule 
(see, for example Refs. 2–4). 

In this paper the method of summation of 
divergent series, well-known as “Generalized Euler 
transform” (GET)1 is used in the simplest case, i.e., 
in the calculation of summation of perturbation 
theory (PT) series of two-atomic Í2 molecule. As 
compared to other summation methods, the GET 
allows the use of additional information on VR-states 
from approximate solutions of the Schrödinger 

equation, that increases the series convergence. 
Therefore, this method can be very efficient means of 
calculation of energy levels of highly excited VR-
states of molecules.  

At the same time, for hydrogen molecule we had 
a full set of data (VR-energy levels for all bounded 
states and a part of resonances) obtained by highly 
accurate ab initio calculation.5 These data present 
unique information about energy levels, convenient 
for development and testing of different summation 
methods. 

Note that strong centrifugal distortion and high 
rotational energy (rotational constant B ∼ 60 ñm–1, 

centrifugal constant D ∼ –0.05 ñm–1) are characteristic 
of the Í2 molecule. Excitation of six or seven quanta 
produces the energy comparable with the energy of 
vibrations. Note that estimation of convergence radius 
for VR series,13 yields J ∼ 25 for the ground vibrational 
state. The convergence radius decreases for excited 
vibrational states. 

The goal of this work is to test the GET method 
by calculation of the Í2 molecule energy levels as an 
example. The main point of this method is the choice 
of an approximant, i.e., a certain approximation for 
energy levels, describing their dependence on the 
perturbation parameter. At a proper choice of the 
approximant the series, transformed by GET method, 
converge quite fast. Since there is no universal way 
for finding the approximant, different approximation 
methods are used, in particularly, the formula for 
energy levels of Kratzer oscillator, i.e., an exactly 
solvable mathematical task,7 the simplest Pade, 
Pade – Borel, and Pade – Hermitt approximants, 
effective characteristic polynomials. The task is 
solved in typical for VR-spectroscopy formulation, 
i.e., at a limited set of energy levels, from which the 
parameters of theoretical model are determined. 
Other levels, which are not present in this set, are 
predicted by the obtained model. Our task is to 
choose such approximant, which gives a satisfactory 
description of levels in the fitting and the most 
accurate prediction for higher energy levels. 

In this paper, the ground vibrational state is 
considered, and it is shown that the most appropriate 
approximants, allowing us to properly represent Í2 
molecule rotational energy levels, are the Kratzer and 
Pade – Borel approximants. Excited vibrational 
states will be discussed in future papers.  

Note that the Euler series, i.e., a particular case 
of GET, were earlier used for solution of various 
tasks of quantum mechanics. They also were used for 
the calculation of energy levels of Í2Î, HDO, D2O 
and CH2 molecules.8–10 
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Generalized Euler transform 
 
The use of perturbation theory for calculation of 

vibrational-rotational energy levels of two-atom 
molecules results in a series of the type 
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where v is the vibrational quantum number; J is the 
quantum number of the angular momentum; Ynm are 
the Dunham coefficients. They are connected in a 
certain way with the expansion coefficients of the 
potential function into a series in terms of degrees of 
shifting from the equilibrium state. Formally (not 
accounting for the convergence) for an individual 
vibrational state v the series (1) can be presented as 
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where em(v) can also be written in the decomposition 
form: 
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Here for brevity a variable is introduced 

 = +( 1).x J J  (4) 

If decomposition coefficients (1) are known, then 
em(v), presented as series in Eq. (3), can be found by 
the appropriate methods. 

Generalized Euler transform allows series (2) to 
be presented in the following way 

 
∞

=

= χ∑
0

( , ) ( ) ( , );
n n

n

E x v p v x v  

 ( )χ = −
( , )

( , ) 1 ;
!

n n

n

n n

x d g x v
x v

n dx
  (5) 

 ( )
=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑

0

( ) 1 ;
n

r

n r

r

n
p v a

r
 

 = ( ) ( );i i ia e v g v   

 
( )

⎛ ⎞
⎜ ⎟ = =
⎜ ⎟ −⎝ ⎠

!
,

! !

r

n

n n
C

r n rr

 

where g(x, v) is an approximant having the following 
decomposition   

 = + + +
2

0 1 2( , ) ( ) ( ) ( )g x v g v g v x g v x … . 

Coefficients pn(v) in Eq. (5) can be considered as the 
fitting parameters. 

The transformed series (5) in contrast to the 
initial series (2) is functional, i.e., GET is equivalent 
to partial summation of the initial series. The 
convergence of the transformed series depends on the 
degree of E(x, v) proper description by approximant. 
Some conditions of the transformed series convergence 

were proposed in Ref. 11, where it was also shown 
that if the approximant is chosen properly, then the 
transformed series can be represented as a finite 
expression. 

Thus, the use of GET depends on properties of 
the approximation function. In particular, different 
summation methods can be used as approximants, for 
example, Pade, Pade – Borel, and others. In this case, 
several first coefficients of PT series are used for 
building of the approximant (i.e., the simplest 

approximants of low order, e.g., Pade [0,1] or [1,1]), 
which give a certain approximation for the energy. 
This expression is further used in GET method for 
transformation of PT series according to Eq. (5). 

It is useful to note that traditionally a 
semiempirical method is used for the calculation of 
VR-energy levels, in which parameters of the 

theoretical model (i.e., decomposition coefficients (1) 
or (2)) are defined by fitting to experimental energy 
levels by the least-squares method. Usually this 
provides for the most accurate calculated values of 
energy levels (at a measurement error level) at a 
small number of fitting parameters. The problem of 
empirical approach lies in the accuracy of predictive 
calculation: as a rule, the accuracy rapidly decreases 
at the transition to highly excited energy levels, 
which are not included into the fitting. 

One of the reasons of poor predictability of the 
semi-empirical method is the series divergence. In 
case when series (1) or (2) are summed “properly,” 
the quality of predictive calculations of energy levels 
significantly increases. 

 In the GET method the series representation in 
the form (5) is rather useful. First, in this case 
energy levels linearly depend on fitting parameters 
pn(v). Second, when using Pade, Pade – Borel, or 

other approximants, we need not calculations in high 
orders of PT; it is sufficient to take only several first 
coefficients. 

 

Approximants and transformed  
PT series  

 

In this paper, different equations are used as an 
approximation function. 

1. Kratzer model6 describes rotational-vibrational 
energy levels of a two-atom molecule with the potential 
function  

 = −
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Schrödinger equation with this potential has an exact 
solution and the energy levels are presented by Kratzer 
function; 
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Here μ is the reduced mass, and the energy is counted 
from zero level v = 0, J = 0. Constants a and b in Eq. (7) 
can also be expressed through the reduced mass μ, 
dissociation energy Ed, and the equilibrium distance re: 
 

 = µ �
2 2 2

ed2 / ,a E r  = + µ �
2 2
ed1 4 2 / .b E r   (8) 

Formula (7) can be used for the transformation 
of series (2). Apparently, the transformed series will 
have the proper asymptotic at high values of v and J, 
i.e., all energy levels will be concentrated in the 
interval defined by the depth of the potential well. 
At the same time, at v, J → ∞ the initial series (2) at 
E(x, v) → ± ∞ has an asymptotic depending on the 
sign of the highest term. 

 Earlier the Euler transformation of series (2) 
with approximant (7) was conducted in Ref. 1 in 
general form. It was shown that the use of Kratzer 
function allows us to introduce new variables 

 = +1( ) /( )Z x x x b  

 and = + + + +2( , ) /( 1 2 )Z x v x b v x b , 

which are less than 1 for any value of vibrational v 

and rotational x = J(J + 1) quantum numbers. 
Transformed series is a power series with respect to 
these variables: 
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The transfer to new variables increases the 
quality of convergence. Expansion of the transformed 
expression into Taylor series returns a common 
exponential expression as a result. High centrifugal 
corrections, which usually are not defined in fitting, 
are “imitated” by the corresponding expansion terms. 
Thus, the Euler transformation allows one to “built 
in” an additional information in PT series and, as a 
result, obtain physically-based expression for energy. 
  2. The Euler method, a special case of GET, was 
used for the calculation of VR-energy levels of Í2Î, 
HDO, D2O, and CH2 molecules.8–10 This method 
corresponds to the use of the simplest Pade approximant 
[0,1] as an approximation function g(x, v): 
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The Euler transformation in this case results in a 
power series, which depends on a new variable X: 
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The new variable is limited in magnitude at all 
values of rotational quantum number, that increases 
the series convergence. The use of an approximant of 
(9) type allows us to take into account the fact that 
the initial series (2) is alternating and centrifugal 
corrections in (2) can be approximately represented 

as exponential expressions. To calculate the 

approximant, only two summands of PT series are to 
be known. Note that when using Eq. (9), GET yields 
p0(v = 0) ≡ 1 and p1(v = 0) ≡ 0; these parameters 
were fixed in the fitting. 

In this work we also used the Pade approximations 
for summing series. It is well-known that the Pade 
approximants P[n,

 

m](x) are the ratio of two 

polynomials, coefficients of which are selected in 
such a way that to accurately represent n + m + 1 
coefficients of the initial series. In this case also 
p0(v = 0) ≡ 1 and the following n + m coefficients of 
the transformed series (5) are equal to zero. The 
series is the form 
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3. Other approximating functions, used in this 
work, are square Pade – Hermitt approximants.7 In 
the general case they are presented as 

 =

[ , , ]( , )r p q
PH x v  
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where Pp(x), Qq(x), Rr(x) are polynomials of p, q, r 
degrees, depending on coefficients of the summable 
series. It follows from Eq. (12) that this 
approximation method allows accounting for both the 

poles and points of E(x, v) bifurcation; the 

approximants are determined by r + p + q + 2 first 
coefficients. The use of PH[0,0,1](x, v) approximant 

(equivalent to generating function from Ref. 4) in the 
GET method also allows us to introduce a new variable 
bound in magnitude for all values of the rotational 
quantum number. The coefficients of the transformed 

series (5) are: p0(v = 0) ≡ 1 and pn(v = 0) ≡ 0, n = 1…r + 
+ p + q + 1. The series (5) has the form 
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4. We also used the effective characteristic 

polynomial Π2(x, v) (see Ref. 12) as an approximating 
function: 
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Expression (14) takes into account that the initial 
series (2) is energy levels, which are roots of 
characteristic polynomial and, consequently, has both 
points of bifurcation and poles. To determine the 
approximant Π2(x, v), we need five first coefficients 
of the initial series. In this case GET method yields 
p0(v = 0) ≡ 1 and pn(v = 0) ≡ 0, n = 1…4. Other 
coefficients of the transformed series are found by 
fitting. The series has the form 

 = Π + χ +2 5 5( , ) ( , ) ( , )E x v x v p x v … .  (15) 
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5. In general case, Pade – Borel approximants 

have the form 

 [ ] [ ]
∞

−

= ∫
, ,

0

( , ) e ( )d ,nm nmt
PB x v P xt t   (16) 

where P[n,
 

m](x) are the Pade approximants of the orders 
n, m for the Borelean image of the initial series (2); 
they are determined from n + m + 1 first coefficients. 
In this case p0(v = 0) ≡ 1, pn(v = 0) ≡ 0, n = 1…n + m; 
and the transformed series is presented as 
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Calculation of H2 molecule vibrational-
rotational energy levels 

 

To validate the GET method applicability and 
predictability, the Í2 molecule rotational energy 
spectrum was calculated and compared with the 
results of highly accurate ab initio calculations,5 in 
which the relativistic and adiabatic corrections were 
taken into account. Since in Ref. 5 energy levels for 
all bounded states of the molecule are presented, these 

data give us a rare possibility to test the summation 
method, using both lower and highly excited states 
up to the molecule dissociation energy, as an example.  
  The estimates of contribution of PT series 

summands to the molecule total energy in ground 
vibrational state are presented in Fig. 1. Rotational 
constant B and centrifugal ones D, H, L, … were 
determined by fitting by the least squares method. 
Then rotational energy BJ(J + 1) and centrifugal 
contributions DJ2(J + 1)2, HJ3(J + 1)3 etc… in the 
total energy were calculated with these values of 
spectroscopic constants. Figure 1 shows that at J = 30 
centrifugal corrections are comparable with molecule 
dissociation energy. Rotational and centrifugal 
constants defined by this method were used further 
for the determination of approximating functions. 

As it was mentioned above, different functions 
were used as approximants in this work, i.e., Pade 
P[0,1](x, v) (model P[0,1]), Pade – Borel PÂ[1,1](x, v) 
(model PB[1,1]), and Pade – Hermitt PH[0,0,1](x, v) 
(model PH[0,0,1]), effective characteristic polynomial 
Π2(x, v) (model ECP), as well as Kratzer formula (7). 
In the last case, parameters a and b were determined 
by two methods: according to formula (8), using the 
known values of equilibrium state and dissociation 
energy (K-1 model), and by the method that reproduces 
rotational and first centrifugal constants (K-2 model). 
  In each case, an expression for transformed series 
(5) was obtained. After that the task has been solved 
by a traditional method of VR-spectroscopy. The 
parameters of the transformed series (7), pn(v = 0) 
were determined by fitting by the method of the least 
squares to rotational energy levels J ≤ 22 of the 
ground vibrational state. The initial data, i.e., 
calculated energy levels5 were noised by a random 
error, which was uniformly distributed in interval  
–0.01–0.01 ñm–1. For each approximant the inverse 

problem was solved, and optimal set of parameters 
pn(v = 0) of the transformed series was selected. To 
do this, a 68% confidence interval was calculated for 
each determined parameters and a standard and 
maximal deviations of the calculated levels from the 
initial ones were found. 
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Fig. 1. Absolute values of contribution of centrifugal 
distortion constants to total energy rotational states Í2. 
Dissociation energy is marked by a horizontal straight line; 
1–6 represent BJ(J + 1); –D[J(J + 1)]2; H[J(J + 1)]3;  
–L[J(J + 1)]5; P[J(J + 1)]5; –Q[J(J + 1)]6. 

 
For 23 < J ≤ 32 energy levels, the predictive 

calculations were conducted and standard and maximal 
deviations were determined. Analysis of these values 
allowed us to determine, which of calculation variants 
(depending on the number of fitting parameters) yields 
the best set of parameters, the best fitting and 

prediction for energy levels.  
The choice of the optimal model was based on 

the following principle: if at a certain number of 
fitting parameters the minimal values of the root-
mean-square error, maximal error, and mean standard 
deviation are the closest to each other, then the given 
model best describes the initial data set. The curves 
of these values for K-2 model are shown in Fig. 2 as 
an example. As is seen, using the given model, the 
most accurate results can be obtained at the number 
of fitting parameters N = 3. 

Basic calculation data: parameters pn(v = 0) and 
error estimates, root-mean-square error and maximal 
deviation are presented in Table. 

The calculations conducted revealed that 

rotational energy spectrum of the H2 molecule up to 
J = 22 is described quite well by the power series 
(2), using six parameters. In this case, the root-mean-
square error is equal to 0.019 ñm–1 and the maximal 
deviation is 0.042 ñm–1. All the determined parameters 
are reliable. At the same time, the predictive 

calculation for higher energy levels gave a very poor 
result: deviations reached 809 ñm–1

 at a root-mean-
square error of 314 ñm–1. 



A.D. Bykov et al. Vol. 21,  No. 10 /October  2008/ Atmos. Oceanic Opt.  723 
 

 

1 2 3 4 5 6
–20 

0 

40 

80 

120 

160 

200 

ε, σ, Δ 

Number of parameters 

1 

2 

3 

 
Fig. 2. Dependence of mean-root-square deviation ε (1), 
root-mean-square error σ (2), and maximal error  Δ (3) on 
the number of fitting parameters (K-2 model). 

 

The application of GET method with different 
approximating functions not always increases the 
quality of fitting, though in any case the predictive 
calculation is better by the order of magnitude. 

Among all calculation variants, the best result 
for J > 22 levels is obtained with PB[1,1] approximant 
(Eq. (16)). Although in this case the root-mean-
square error for the fitted levels exceeds the “noise” 
by 4 times, maximal error is 0.082 cm–1 and the error 
in prediction of energy levels of higher states is the 
least. The K-1 approximant also gives quite acceptable  
 

values for higher state levels. In this case, parameters 
a and b are determined from dissociation energy and 
equilibrium bound length. Note that Pade – Borel 
approximant PB[1,1] gives the best predicted levels 
but somewhat worse fitting result for J ≤ 22 levels. 
The predictive calculations of Pade – Hermitt 

PH[0,0,1] approximants or effective characteristic 
polynomial (ECP) in the framework of GET method 
are quite inaccurate. 

It was also found that K-2 model with three fitting 

parameters gives quite good results for levels with 

J > 22 (σ = 3.35 ñm–1, maximal error is 2.18 cm–1). 
However, for levels with J ≤ 22 calculated levels 
significantly differ from the initial ones (σ = 0.101 ñm–1, 
maximal error us 0.169 ñm–1). Note, that this model 
was obtained from Kratzer approximant (7) by a 
specific selection of a and b parameters. Therefore, it 
is useful to modify Kratzer approximant in such a 
way that its parameters reproduce a larger number of 
terms of the PT series. Modified Kratzer formula can 
be presented in the following way (model Km): 

 ( )
+ + +

=

+ + + + +

2

0 1 2

2

0 1 2

...

1 2 ...
m

a a x a x
K x

V b b x b x

.  (18) 

In the process of calculation we revealed that with 

the help of à0, b0, b1 

parameters (Eq. (14)), determined 
in such a way that they reproduce rotational B and 
centrifugal D- and H-constants, we can obtain quite 
good calculation of levels with J > 22. 

 
 

Table. Values of pn(v = 0) parameters in Eq. (5), root-mean-square error  
and maximal difference between calculated and initial values of levels 

N  PB[1,1] K-1 K-2 Km P[0,1] PH[0,0,1] ECP 

0 1 2.5843(14) 1 1 1 1 1 

1 0 1.5444(13) 0 0 0 0 0 

2 0 0.9918(17) 0.000971(65) 0  0.3642(24) 0– 0 

3 0.2887(38) 0.58114(82) –0.3793(10) 0.0200(21)  –0.088(21) –0.319(68) 0 

4 0.263(10) 0.4332(54) –0.1714(57) –0.488(40)  –0.170(46) 9.39(58) 0 

5 – – –0.3403(97) 2.98(24)  – –26.1(14) 0.065(58) 

6 – – – –7.29(62) – 30.9(11) 0.71(33) 

7 – – – 8.83(55) – – 1.08(54) 

Root-mean-square and maximal errors 
Fitting up to J = 22 

σ 0.042 0.024 0.012 0.009 0.036 0.074 0.015 

Δ 0.082 0.042 0.026 0.018 0.071 0.137 0.32 

Predictive calculation J > 22 

σ 2.3 7.3 9.4 14.0 15.8 63 49 

Δ 6.3 18.8 22.8 33.9 38 139 116 

Fitting to all energy levels up to J = 30 

Np 5 8 7 7 5 7 5 

σ 0.091 0.32 0.036 0.068 0.024 0.093 1.18 

Δ 0.34 0.57 0.063 0.13 0.056 0.15 4.59 

 

N o t e . N is the order of summand (5), the estimation error in determination of the parameter is 
presented in units of the last significant digits is given in brackets; σ is root-mean-square error; Δ is the 
maximal error; Np is the number of fitting parameters. The parameters, free of error estimate, are fixed. 
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The GET method and the approximants mentioned 
above were used for fitting to all energy levels of the 
ground vibrational state of Í2. We have selected a 
theoretical model, the parameters of which were 
statistically reliable. Polynomial representation, as 
expected, does not give a satisfactory result, because 
in this case the same quantity of parameters, as 
initial data, is required to reproduce the levels. At 
the same time, the use of Euler method with any 
approximant gives energy levels, which agree with 
the initial ones much better at a small number of 
parameters. The best fitting is when using K-2 Kratzer 
approximant and P[0,1] Pade approximant. Maximal 
deviations for these models are 0.063 and 0.056 ñm–1, 
respectively, and standard deviations σ are of 0.036 
and 0.025 ñm–1 when using five and seven fitting 
parameters, respectively. For other approximants the 
fitting is worse (the data are presented in the Table). 
  In this paper we considered the simplest case, 
i.e., rotational energy spectrum of the Í2 molecule, 
which was used as an example in testing the GET 
method. The results of application of different 

approximating functions were analyzed. The 

calculations were conducted in a typical spectroscopic 
way, i.e., some levels were used for fitting model 
parameters. The model was further used for calculation 
of higher rotational states up to dissociation energy. 
The complete set of levels, obtained as a result of 
highly accurate ab initio calculations, was used as 
the initial data. These energy levels were “noised” 
with 0.01 ñm–1 random error, typical for such 
measurements.  

 

Conclusion 
 
Analysis of results, presented in this paper, allows 

us to draw two conclusions. First, in the framework 
of traditional semiempirical approach of the theory of 
VR-spectra of molecules, the generalized Euler 
transform allows us to use the simplest approximants 
in calculations of molecule rotational energy levels, 
which do not require high orders of PT calculations. 
Second, provided the approximant is selected correctly, 
the application of this method allows quite satisfactory 
predictions for the levels, which were not used in 
fitting parameters of the theoretical model. 

It should be noted that the range of energy 
levels, used in calculations, is quite wide: from 0  
 

to 34000 ñm–1; and the whole energy range is described 
only by two parameters (in case of Pade – Borel 
approximant) with a maximal error of 6.3 ñm–1 for 
J = 31 state close to dissociation energy. Such accuracy 

is comparable with results of “global” variation 
calculations. Apparently, the theoretical model 
parameters, determined by the fitting, include large 
inharmonic additions, centrifugal distortion, and some 

more fine effects, caused by non-adiabatic interactions 
and relativistic corrections. 
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