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The quality of image of an extraterrestrial object formed by an astronomical optical system 

through the turbulent atmosphere is analyzed. Relative increase of the Strehl parameter at adaptive 
correction is calculated using the technique of laser guide stars. The efficiency of adaptive correction 
of distortions for different types of guide sources is compared. A specialized wave front sensor is 
applied, which operates with the use of a wide laser beam as a reference wave and allows the 
continuous phase of the reference wave to be reconstructed. The calculations are performed for 
different models of the vertical dependence of the structure parameter of refractive index of the 
turbulent atmosphere. The estimates obtained show that the formed field is quite close to a plane 
wave in its parameters. That is why we obtain high correction and large increase of the Strehl 
parameter, which indicates indirectly a good correction of higher modal components, which are 
poorly corrected with the use of traditional schemes of formation of a laser guide star with the aid of 
a focused laser beam. The comparative calculations for different models of the vertical profile of the 
structure parameter of refractive index have shown serious differences in the behavior of correlation 
radii for plane and spherical waves.  

 

Introduction 

Atmospheric turbulence is a serious limitation 
for astronomical observations. Application of 
adaptive optical systems can improve significantly 
the quality of images observed through the 
atmosphere. In adaptive systems, information on the 
distribution of a medium turbulent inhomogeneities 
along the propagation path is obtained from 
measurements with the use of reference sources. A 
reference source as some object with the known 
amplitude-phase distribution located at a known 
distance can be formed directly on the surface of the 
object, whose image is analyzed in the optical system, 
or it can lie at an infinite distance (natural guide 
star), or in the atmosphere (the so-called laser guide 
star of LGS). In this paper, we consider a new 
method of formation of a laser guide star. 

Initial statements 

Let an object (natural star) observed by an 
astronomical telescope lie at infinity. The wave 
formed by the object on the telescope entrance 
aperture is a plane wave. Assume that the guide 
source is in the plane x. The entrance aperture of the 
telescope forming an image of the extraterrestrial 
source is approximated by the exponential function 

ρ = −ρ
2 2( ) exp( /2 ),W R  the action of the telescope 

can be replaced by an equivalent lens introducing the 

phase term 2exp( /2 ),ik f− ρ  where f is the equivalent 

focal length of the telescope optical system; 2R is the 
diameter of the telescope entrance aperture. Consider 
the case of adaptive correction of distortions based on 

the phase conjugation algorithm with the use of wave 
front measurements from the laser guide star. For 
traditional LGS, it is usually assumed that its visible 
size does not allow it to be resolved by the telescope 
optical system and therefore can be considered as a 
point source.  

The phase of the wave with the wave number 
k = 2π/λ for a point guide source in the plane of the 
telescope entrance aperture x = 0 can be written as  
 

 
2

ref sph(0, ) (0, ; ,0),
2

k
S kx S x

x

ρ
= + +ρ ρ   (1) 

where sph(0, ; ,0)S xρ  is the random phase of the 

spherical wave caused by turbulence during the wave 
propagation from the plane x to the point ,ρ  lying in 

the plane of the entrance aperture x = 0. It is assumed 
here that a point source lies on the optical axis of the 
telescope. This means that the conditions of operation 
of the adaptive optical system allow the guide source 
to be formed at the same optical axis, at which the 
studied object is observed. If the image of the natural 
star is formed in the focal plane of the telescope 
(x = –f), we obtain the field in the following form: 
 

 

2 2 2 2
1 1 1

0 1 1pl

( , ) d  exp( /2 )exp( /2 )

(0, ; , )exp[ ( )].

U f R f

G f iS

− = ρ − ρ − ρ ×

× −

∫∫ρ

ρ ρ ρ

 

 (2)

 

Here 0 1(0, ; , )G f−ρ ρ  is the Green function for the free 

space; 1pl( )S ρ  are phase fluctuations caused by 

atmospheric turbulence for the plane wave at the 
telescope entrance aperture. Equation (2) is written 
on the assumption that the field distribution can be 
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represented by the Kirchhoff diffraction integral1 
under the condition that the plane wave with the 

phase distortions 1pl( )S ρ  is incident on the entrance 

aperture. For most astronomical applications, it is 
possible to take into account only phase fluctuations 
in the incident wave, while amplitude fluctuations 
contribute smaller as compared to the phase ones. It 
can be shown5 that as a result of the phase adaptive 
correction with the use of the fluctuation part of the 
spherical reference wave (1) from LGS, the corrected 
field in the focal plane takes the form  

 

2 2 2
1 1 0 1

2
1 1 1pl sph

( , ) d exp( /2 ) (0, ; , )

exp[ ( ) ( ,0;0, ) /2 ].

U f R G f

iS iS x ik f

− = ρ − ρ − ×

× − − ρ

∫∫ρ ρ ρ

ρ ρ

  

(3)

 

It should be noted that in Eq. (3) the integral is 
calculated within the entrance aperture of the 
telescope, that is, in a circle with an area πR2.  

Nearly all laser guide stars are formed now by 
focusing laser radiation from the ground. However, 
the use of focused laser beams for formation of a laser 
guide star has a serious limitation connected with the 
fact that the point guide source and the plane wave 
(formed from some actual star) are imaged in 
different planes and phase fluctuations for plane and 
spherical waves have different values. As a result, the 
phase conjugate correction5 incompletely compensates 
distortions. In the literature, this phenomenon is 
called focal anisoplanatism.2  

Oriented wavefront sensor  

Some approaches were proposed to prevent 
manifestations of focal anisoplanatism. For example, 
a wide collimated beam is proposed to use LGS 
formation,2,3 which irradiates a rather large area and 
forms a secondary source with the size somewhat 
exceeding the diameter of the telescope aperture. In 
this case, it is proposed4 to use the wavefront sensor 
of such a design that each its subaperture sees only a 
limited part of the whole irradiated LGS surface. We 
can consider such a guide star as a diffusely luminous 
surface,3,4 and since the field of view of each 
subaperture is much smaller than the whole luminous 
area, the LGS jitter almost does not contribute to the 
measured displacement of an individual fragment (for 
an individual subaperture). Thus, an individual 
aperture does not see edges of the irradiated surface 
of the secondary source, and therefore the jitter of 
the secondary source itself does not contribute to the 
measured jitter of its image in the focal plane of the 
telescope. As a result, the measured image jitter of an 
individual subaperture is caused only by radiation 
propagation through turbulent fluctuations of the 
atmosphere on the path from LGS to the telescope.  
 In our papers,3,4,6 it was proved that for each 
subaperture we have an individual secondary source 
formed by the subaperture field of view. The spatial 
coherence radius of the field of this secondary partial 
source (diffusely reflected radiation) can be estimated 

as ρcoh ≈ λ/θ, where θ = d/x is the angle, at which 
the irradiated part of the secondary source is seen  
(d is the LGS area visible within the field of view of 
an individual subaperture). If we select the angle 

sph
0/ / ,d x rθ = < λ  that is, the field of view angle of 

each subaperture  is smaller than the coherence angle 
for the spherical wave, then we obtain1,5,6 that within 

the coherence radius sph
0r  the field of this partial 

secondary source can be considered as coherent, the 
phase reconstructed from such measurements can be 
joined smoothly with neighboring subapertures, and 
the continuous phase can be obtained as a result. If  
a square subaperture array is used and the distance 
between neighboring subapertures is taken equal to 

the coherence radius for the spherical wave sph
0( ),d r=  

then the phase reconstructed in neighboring 
subapertures can be joined smoothly.  

Calculation of mean intensity 
distribution of the field  

in the telescope focal plane 

To estimate the efficiency of the proposed new 
scheme of LGS formation, we will calculate 
comparatively the mean intensity distribution for the 
field in the focal plane of the telescope without 
correction, with correction by the traditional scheme, 
that is, based on Eq. (3), and by the new approach 
with the use of a collimated beam forming the guide 
star. In the last case, a large irradiated surface serves 
as a guide source. With the aid of a specialized 
wavefront sensor,3,4 we divide this surface into a 
system of spherical sources (for simplicity, we use a 
square grid, that is, obtain N × N = N2

 spherical 
waves). Then the field (2) after correction by a 
system of spherical waves4 under the condition that 
the phase of the guide source is reconstructed as a 
continuous one can be written as follows: 

2

2 2 2
1 0 1 1

1

2
1 1 1pl sph

( , ) d (0, ; , )exp( ( ) /2 )

exp[ ( ) ( ; ) /2 ],

N

j

j

j

U f G f d

iS iS ik f

=

− = ρ − − − ×

× − − ρ

∑∫∫ρ ρ ρ ρ ρ

ρ ρ ρ
 

where 1sph( ; )jS ρ ρ  are phase fluctuations of an 

individual spherical wave at the point 1ρ  on the 

entrance aperture of the telescope; the source of this 
wave lies in the LGS plane at the point .jρ  It should 

be noted that the integral in Eq. (4) is calculated 
over the area of an individual subaperture Σ = πd2/4, 
whose center lies at the point .jρ  Totally, we have 

N × N = N2  of such partial reference waves. Since the 
optical field formed by the secondary system of 
sources on the telescope entrance aperture remains 
coherent (for an individual subaperture) within the 

zone sph
0 ,d r<  after summation and averaging over 

(4)
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the whole telescope aperture and over turbulent 
atmospheric fluctuations, we obtain from Eq. (4) the 
following equation for the mean intensity 
distribution of the corrected field in the focal plane:  
 

 

 

2 2

2 2 2 2
1 2 1

1 1

2 2
2 0 1

2 2
0 2 1 2

1 2 1 2pl pl sph sph

*

( , ) d d exp( ( ) /2 )

exp( ( ) /2 ) (0, ; , )

(0, ; , )exp( /2 /2 )

exp{ [ ( ) ( )] [ ( ; ) ( ; )]} .

N N

j

j l

l

j l

I f d

d G f

G f ik f ik f

i S S i S S

= =

< − > = ρ ρ − − ×

× − − − ×

× − − ρ + ρ ×

×< − − − >

∑∑∫∫ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ ρ

  

  (5) 

The mean intensity distribution for the field in the 
focal plane of the telescope without adaptive 
correction can be written analogously: 

2 2 2 2 2
1 2 1 2

0 1 0 2

2 2
1 2 1 2pl pl

*

( , ) d d exp( ( )/2 )

(0, ; , ) (0, ; , )

exp( /2 /2 ) exp{ [ ( ) ( )]} .

I f R

G f G f

ik f ik f i S S

< − > = ρ ρ − ρ + ρ ×

× − − ×

× − ρ + ρ < − >

∫∫ρ

ρ ρ ρ ρ

ρ ρ

 

 (6) 

The angular brackets here denote the operation 
of averaging over fluctuations of atmospheric 
turbulence. The relative efficiency of correction based 
on the guide star formed by a wide collimated beam 
is estimated in comparison with the traditional 
scheme. For this purpose, we compare the results of 
correction with the use of one spherical wave on the 
optical axis of the telescope and a system of N2

 

spherical waves.  

Telescope without adaptive correction 

First, calculate the mean intensity distribution in 
the focal plane of the telescope without correction. In 
the integrand of Eq. (6), precalculate the factor in 
angular brackets, which is connected with the action 
of atmospheric turbulence. In the averaging over 
atmospheric turbulence fluctuations, the idea that 
fluctuations of the phase S are Gaussian and have a 
zero mean is used. Then we obtain  

 
2

exp( ) exp( ).
2

S
iS

< >

< − > = −   

We use the isotropic model1 of the spectral 
density of the refractive index fluctuations, which 
takes into account the inner scale of turbulence l0  

 2 11/3 2 2( , ) 0.033 ( ) exp( / ),
n n m

C
−Φ κ ξ = ξ κ −κ κ   

 05.92/ .
m

lκ =  

As a result, the term in angular brackets in Eq. (6) 

under the condition 1 2 1,
m

κ − �ρ ρ  can be written as  

 

pl
1 2

5/3 pl 5/3
1 2 0

1
{...} exp{ ( )}

2

exp[ 3.44 /( ) ].

s
D

r

< > = − − =

= − −

ρ ρ

ρ ρ

  

(7)

 

Here pl
0r  is the coherence radius for the plane wave 

propagating from infinity to the plane of the 
receiving aperture of the telescope. Then we calculate 
the product of the Green functions of the free space, 
that is,  

0 1 0 2

2 2 2

1 2 1 2

*(0, ; , ) (0, ; , )

exp[ /2 /2 ( )/ ].

G f G f

f ik f ik f ik f−

− − =

= − ρ + ρ + −

ρ ρ ρ ρ

ρ ρ ρ

 

As a result, the intensity distribution at the telescope 
focus under the vacuum conditions is described by 
the equation 

 2 4 2 2 2 2 2

vac( , ) 4 exp( / ).I f R f k R f−

− = π − ρρ   (8) 

In analytical calculations without invoking numerical 
methods we use the quadratic approximation for 
Eq. (7). Thus, for the telescope without correction 
we have  

 

2 4 2

2 2 2 2 2 pl 2
0

2 pl 2
0

( , ) 4

exp[ / (1 13.76 /( ) )
.

(1 13.76 /( ) )

I f R f

k R f R r

R r

−

< − > = π ×

− ρ +
×

+

ρ

  
(9)

 

Using Eqs. (8) and (9), we calculate the Strehl 
parameter, which is the ratio of the mean 
intensity (9) on the axis of the system in a randomly 
inhomogeneous medium to the intensity in the 
vacuum, that is,  

2 pl 2 1
vac 0St ( , 0) / ( , 0) (1 13.76 /( ) ) .I f I f R r −

= < − > − = +  (10) 

It should be noted that the Strehl parameter is one of 
the key parameters for determination of the efficiency 
of application of an opto-electronic system in a 
randomly inhomogeneous medium. This parameter 
determines the penetration of an opto-electronic 
system. For example, in astronomy it determines the 
minimal brightness of a star, which can be detected 
by a telescope. It is clear from Eq. (10) that the 
value of the system Strehl parameter, when observing 
through a turbulent medium, depends on the 
coherence radius of the plane wave  

 pl 2 2 3/5
0

0

1.707{ d ( )} .
n

r k C

∞

−= ξ ξ∫  

The coherence radius is calculated over the 
whole thickness of this randomly inhomogeneous 
medium.  

Traditional correction with the use  

of a focused beam  

It is not difficult to show analogously that for 
the field formed by a natural star the following 
equation can be resulted from the adaptive correction 
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with the use of one guide star lying on the telescope 
axis5–8: 

2 2 2 2
1 2 1

2 2
2 0 1 0 2

2 2
1 2 1 2pl pl

1 2sph sph

*

( , ) d d exp( /2 )

exp( /2 ) (0, ; , ) (0, ; , )

exp( /2 /2 ) exp{ [ ( ) ( )]

[ ( ,0;0, ) ( ,0;0, )]} ,

I f R

R G f G f

ik f ik f i S S

i S x S x

< − > = ρ ρ −ρ ×

× −ρ − − ×

× − ρ + ρ < − −

− − >

∫∫ρ

ρ ρ ρ ρ

ρ ρ

ρ ρ

  

and the term in the angular brackets is  

pl sph
1 2 1 2

1 1 1 2pl sph pl sph

2 2 2 1pl sph pl sph

1 1
{...} exp{ ( ) ( )

2 2

( ) ( ,0;0, ) ( ) ( ,0;0, )

( ) ( ,0;0, ) ( ) ( ,0;0, ) }.

s s
D D

S S x S S x

S S x S S x

< > = − − − − +

+ < > − < > +

+ < > − < >

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

  

  (12) 

Here pl
1 2( ),

s
D −ρ ρ  sph

1 2( )
s

D −ρ ρ  are structure 

functions of the phase for the plane and spherical 
waves. To calculate components of Eq. (12), let us 
write the equation for the phase in the plane and 
spherical waves (with a center at the origin of 
coordinates) in the approximation of geometric 
optics. Since the wave propagates top-down, for the 
plane wave we have1: 

 2
pl

0

(0, ) d d ( , )exp( ),

x

S k n x i ik= ξ − ξ +∫ ∫∫ρ κ κρ αρ  (13) 

where α is the wave front tilt angle for the star 

relative to the telescope axis. If α = 0, we deal with 
the normally incident wave. We can also write the 
equation for the spherical wave propagating from 0ρ  

in the plane x: 

 1 0sph

0

(0, ) d [ , / (1 / )].

x

S k n x x= ξ ξ ξ + −ξ∫ρ ρ ρ   (14) 

Hereinafter, we use the spectral representation for 
fluctuations of the refractive index  

 2

1( , ) d ( , )exp( ),n n iξ = ξ∫∫R Rκ κ  

then for fluctuations in the spherical wave  

 

2
sph

0

(0, ) d d ( , )

exp[ / (1 / )].

x

S k n x

i x i x

= ξ − ξ ×

× ξ + − ξ

∫ ∫∫

0

ρ κ

κρ κρ

 

We continue calculation of component terms of 
Eq. (12) and introduce for brevity 

 1 1 1pl sph( ) ( ) ( , ).j jS SΔ = −ρ ρ ρ ρ   (15) 

Here , 1,...,j j N=ρ  are coordinates of the sources of 

spherical waves. Then we obtain  

2 2
1 2 1 2pl pl

2
1 2sph sph

1 2 1 2pl pl sph sph

[ ( ) ( )] [ ( ) ( )]

[ ( , ) ( , )]

2 [[ ( ) ( )][ ( , ) ( , )] .

j j

j j

j j

S S

S S

S S S S

< Δ − Δ > = < − > +

+ < − > −

− < − − >

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

  

  (16) 

We use the isotropic model 1 of the spectral density 
of fluctuations of the refractive index, and then for 

the condition 1 2 1
m

κ − �ρ ρ  the first two terms of 

Eq. (12) have the form: 

pl sph
1 2 1 2

5/32 2 5/3 2
1 2

0 0

( ) ( )

2.94 { d ( ) d ( / ) ( )} ,

s s

x

n n

D D

k C x C x

∞

− + − =

= ξ ξ + ξ ξ − ξ −∫ ∫

ρ ρ ρ ρ

ρ ρ

   (17) 

and mutual terms from Eq. (12) yield 

1 2 1 2pl pl sph sph

2 2 2 11/3 2 2

0 0

2 [ ( ) ( )][ ( , ) ( , )]

8 0.033 d ( ) d exp( / )[...],

j j

x

n m

S S S S

k C x

∞

−

− < − − >=

=− π ξ −ξ κκκ −κ κ∫ ∫

ρ ρ ρ ρ ρ ρ

 

   (18) 

where for convenience, summing up all these terms, 
write them in the form 1 2 3 4[...] ,I I I I= + + +  where 

 1 0 12 [ (1 / ) ],jI J x= − π κ − ξ −ρ ρ  

 2 0 22 [ (1 / ) ],jI J x= − π κ − ξ −ρ ρ  

 3 0 2 12 [ (1 / ) / ],jI J x x= π κ − ξ − + ξρ ρ ρ  

 4 0 1 22 [ (1 / ) / ].jI J x x= π κ − ξ − + ξρ ρ ρ  

It is seen that to calculate all four terms in Eq. (18), 
it is necessary to calculate the following integral: 

1 2 1 2pl pl sph sph

2 2 2 11/3 2 2

0 0

2 [ ( ) ( )] [ ( , ) ( , )]

8 0.033 d ( ) d exp( / )[...].

j j

x

n m

S S S S

k C x

∞

−

− < − ⋅ − >=

=− π ξ −ξ κκκ −κ κ∫ ∫

ρ ρ ρ ρ ρ ρ

   (19) 

Let the inequality  

 

22 2

1(1 / )
1,

4

j mx− ξ − κ
�

ρ ρ
  

keeps true at the most part of the path. Then we can 
use the following asymptotic in Eq. (19): 

 

⎛ ⎞− ξ − κ
⎜ ⎟− − ≈
⎜ ⎟
⎝ ⎠

−− ξ
≈ κ

Γ

22 2
1

1 1

5/3
5/3

1 5/3

5/3

(1 / )
5/6,1;

4

(1 / )
.

(11/6) 2

j m

j
m

x
F

x

ρ ρ

ρ ρ

 

(11)
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As a result, we get 

 
5/35/3

18/3

0

( 5/6)
(...)d (1 / ) .

2 (11/6)
jx

∞

Γ −
κ = − ξ −

Γ∫ ρ ρ  

After summation of all six terms of Eq. (16), we have 

2
1 2

2 2 2

8/3

0

5/3 5/35/3
1 2 1 2

5/3 5/35/3 5/3
1 2

5/3

2 1

5/3

1 2

[ ( ) ( )]

( 5/6)
8 0.033 d ( )

2 (11/6)

[ ( / )

(1 / ) (1 / )
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x

n
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j

j

k C x

x

x x

x x

x x
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Γ −
= − π ξ −ξ ×

Γ

× − + ξ − +

+ −ξ − + −ξ − −

− −ξ − + ξ −

− −ξ − + ξ

∫

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

  

(20)

 

Then perform the first check. Assuming 1 2=ρ ρ  in 

Eq. (20), we obtain for the integrand  

2
1 2

2 2 2

8/3

0

5/3 5/35/3
1 1 1 1

5/3 5/35/3 5/3
1 1

5/3

1 2

5/3

2 1

[ ( ) ( )]

( 5/6)
8 0.033 d ( )

2 (11/6)

[ ( / )

(1 / ) (1 / )
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x

n
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j

j

k C x

x

x x

x x
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< Δ − Δ > =

Γ −
= − π ξ − ξ ×

Γ

× − + ξ − +

+ − ξ − + − ξ − −

− − ξ − + ξ −

− − ξ − + ξ ≡

∫

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

 

Consequently, Eq. (20) is true. Then we consider the 
term in square brackets in Eq. (20): 

 

5/3 5/35/3
1 2 1 2

5/3 5/35/3 5/3
1 2

5/3

2 1

5/3

1 2

[...] [ ( / )

(1 / ) (1 / )

(1 / ) ( / )

(1 / ) ( / ) ].

j j

j

j

x

x x

x x

x x

= − + ξ − +

+ − ξ − + − ξ − −

− − ξ − + ξ −

− − ξ − + ξ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

 

The coefficient is 

2

8/3

( 5/6)
8 0.033 2.82.

2 (11/6)

Γ −
− π =

Γ

 It 

can be easily shown that for the case of a traditional 
guide star, when the reference spherical wave is at 
the axis of the system, that is, 0,j =ρ  we have in the 

quadratic approximation  

22 2

1 2 1 2

0

2 2 22 2 2

1 2 1 2

2 2

2 1 1 2

22 2 2

1 2

0

[ ( ) ( )] 2.82 d ( )[
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( / ) ( / ) ]

2.82 d ( )( / ) .

x

j j n

x

n

C x

x x x

x x

k C x

< Δ −Δ >≈ ξ −ξ − +

+ ξ − + −ξ + −ξ −

− − ξ − − ξ =

= ξ ξ ξ −

∫

∫

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

 

(21)

 

As a result of correction with the use of one spherical 
reference wave, the integrand of Eq. (11) includes a 
factor of the form  

 

2 2

2
1 2 0

pl 2
0 2

0

d ( )( / )

exp .
( )

d ( )

x

n

n

C x

r

C

∞

⎡ ⎤
⎢ ⎥ξ ξ ξ
⎢ ⎥−
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⎢ ⎥

ξ ξ⎢ ⎥
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∫

∫

ρ ρ
 (22) 

Thus, for distribution of mean intensity in the 
telescope focal plane in the traditional correction 
scheme obtain the equation 

 

2 4

2 2 pl 2
0

2 2 2 2 2 pl 2
0

4
( , )

[1 4 /( ) ]

exp / 1 4 /( )[ ( )]{ },

R
I f

f R r

k R f R r

π
< − >= ×

+

× − ρ +

�

�

ρ

  

(23)

 

in which the coherence radius of the field pl
0r
�  (at 

correction with the spherical reference wave) is 
introduced in the form  

 

1/2

2 2

pl pl 0
0 0

2

0

d ( )( / )

.
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x

n

n

C x

r r

C

−

∞
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⎢ ⎥
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⎢ ⎥
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∫

∫
�   (24) 

As a result, the Strehl parameter for the telescope 
corrected with the aid of focused LGS is 

 2 pl 2 1
0St [1 4 /( ) ] .R r

−

= + �  (25) 

Thus, in Eq. (25) compared to Eq. (10), we can see a 
significant increase of the Strehl parameter as a result 
of application of adaptive correction based on 
traditional LGS. Consequently, adaptive correction 
with the use of traditional focused LGS is in fact 
equivalent to the increase in the size of the coherent 
part of the telescope aperture, and this increase 
appears to be equal to  
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and can be calculated using the models of the vertical 
profile of the structure parameter of the atmospheric 

refractive index 2( )
n

C ξ . 

Models of atmospheric turbulence 

For numerical calculations, we use the models of 
the vertical profile of the refractive index structure 
parameter7–15 and calculate the coherence radii for 
the plane and spherical waves under conditions of 
vertical propagation (in this case, the variable ξ 
corresponds to propagation along the vertical). 
Compare phase fluctuations in the plane and 
spherical waves and calculate the following integrals: 
 

 

5/3pl 2 2
1 2 1 2

0

5/3 pl 5/3
1 2 0

( , ) 2.82 d ( )

6.88 ( ) ,

x

s n
D k C

r
−

= − ξ ξ =

= −

∫ρ ρ ρ ρ

ρ ρ

  

(26)

 

5/3sph 2 2 5/3
1 2 1 2

0

5/3 sph 5/3
1 2 0

( , ) 2.82 d ( )(1 / )

6.88 ( ) ,

x

s n
D k C x

r
−

= − ξ ξ − ξ =

= −

∫ρ ρ ρ ρ

ρ ρ
 

as well as introduce the following designations: 

 pl 2 2 3/5
0

0

{0.41 d ( )}

x

n
r k C

−= ξ ξ∫   

for the coherence radius in the plane wave; 

 sph 2 5/3 2 3/5
0

0

{0.41 d (1 / ) ( )}

x

n
r k x C

−= ξ − ξ ξ∫   

for the coherence radius in the spherical wave. 
Calculating the ratio of the correlation radii for 

plane and spherical waves, we obtain that the 
coherence radius in the spherical wave is higher than 
in the plane wave: 

 

3/5

2

sph
0 0
pl
0 5/3 2

0

d ( )

.

d (1 / ) ( )

n

x

n

C

r

r

x C
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= ⎨ ⎬
⎪ ⎪

ξ − ξ ξ⎪ ⎪
⎪ ⎪⎩ ⎭

∫

∫
 (28) 

The calculated coherence radii (for a height 
x =100 km) are summarized in Table 1. 

 
Table 1 

Model pl
0 ,r  cm 

sph
0 ,r  

cm 
Profile of Geophysical Laboratory of USAF 20.80 22.90

Model for the Cerro Paranal Observatory  13.16 14.80

Hufnagel–Stanley profile of turbulence 5.01 8.10 

Modified Hufnagel–Stanley profile 8.03 18.70

Greenwood turbulence profile 12.92 13.10

Profile for nighttime atmospheric 
conditions 19.91 21.97

The data of Table 1 allow us to estimate the size 
of the coherent area or the allowable size of the 
subaperture, as well as the Strehl parameter in the 
telescope without correction. These results coincide 
with the earlier obtained ones.5,16–18 Table 2 
summarizes numerically calculated sizes of the 
increased coherent part of the telescope aperture due 
to action of adaptive correction. The calculations 
were conducted by Eq. (24) for three most widely 
used models for three heights of LGS formation: 20, 
40, and 100 km. 

 

Table 2 

x , 
km

Greenwood 
model 

Modified Hufnagel–
Stanley profile 

US profile for 
nighttime conditions

20 6.08 5.19 7.07 

40 11.32 10.15 13.74 

100 27.74 25.82 27.42 

 

These calculations show that the increase in the 
telescope aperture coherent part for different models 
of the vertical profile of the refractive index 
structural parameter for a height x = 100 km ranges 
from 25 to 27 times. Thus, if the coherence radius for 
the plane wave is equal, say, to 20 cm, then the 
traditional correction increases the size of the 
telescope aperture coherent part roughly to 5 m. As a 
result, it can be stated that the traditional correction 
with the use of a single point guide star significantly 
increases the telescope efficiency, but for rather large 
telescopes (larger than 10 m) the traditional scheme 
fails to ensure the complete correction.  

In addition, as can be seen from Table 1, there 
are serious differences in coherence radii for the plane 
and spherical waves. The wavefront sensor3,4 employs 
just these differences in the coherence radii. In this 
sensor, the subaperture size is equal to the coherence 
radius for spherical waves, which is somewhat larger 
than that for a plane wave. 

Correction with a guide star being  
a wide collimated beam 

Let us calculate the Strehl parameter for the 
telescope operating through the turbulent atmosphere 
with correction based on a wide collimated beam. 
The use of a specialized wavefront sensor is assumed. 
Using Eq. (5), we can write the mean intensity of 
the corrected field in the following form: 

2 2
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(27)

(29)
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where ,j lρ ρ  

2( , 1, ..., )j l N=  are coordinates of 

sources of spherical waves. Repeating the operation 
of averaging as earlier, we have  
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ρ ρ ρ

ρ ρ ρ

  

Then, using the quadratic approximation in 
place of the 5/3 dependence for the term in the 
square brackets in Eq. (28), obtain 
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As a result, write for the corrected mean intensity  
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(31) 

Note that for off-axis points ( 0≠ρ ), an 

oscillating factor of the form exp[ ( )/ ]j j lik f− −ρ ρ ρ  

appears in Eq. (31) for terms with  j ≠ l in the 
integrand. Therefore, these terms are strongly 
suppressed (similarly to N–2, where N is the 
dimension of the subaperture array). However, for 
the system axis ( 0=ρ ) Eq. (31) transforms into  
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1 2 1 22
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  (32) 

Equation (32) fully coincides with Eq. (23) for 
the mean intensity distribution when correcting by 
the traditional scheme, but in the last equation the 
integration is performed not over the whole entrance 
aperture of the telescope, but over the subaperture 

area, whose size is equal to sph
02 / ,R N d r= ≈  and 

then almost the whole receiving aperture of the 
telescope becomes coherent. As a result of 
calculations for adaptive correction with the use of a 
wide collimated beam, the Strehl parameter  of such 
a telescope is equal to  

 2 2 pl 2 1
0St [1 ( ) ] .R N r− − −

= + �   (33) 

Thus, increasing the number of subapertures N 
of the initial telescope aperture, it is possible to make 
the Strehl parameter arbitrary infinitely close to 
unity for any telescope, that is, almost any aperture 
can be made coherent.  

Conclusions 

Let us summarize the results of our calculations 
and reduce them to simple equations. Take into 
account  the use of quadratic approximation in 
calculations, that is, the change of the 5/3 law by 
the 2 law. Now perform the inverse substitution. 
Then from Eq. (10) we obtain that the Strehl 
parameter for the telescope without correction is 
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  (34) 

In the system with correction, which employs 
traditional focused LGS, the transformation of 
Eq. (25) yields 
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∫
  (35) 

Finally, at correction with the collimated beam as 
LGS, using a special wavefront sensor, from Eq. (33) 
we obtain 

 

1

2 2 1/3

2 0

5/3 2

d ( )( / ) (2 )

St 1 4 .
( /2 )

x

n
C x R

N R

−

−

⎡ ⎤
⎢ ⎥ξ ξ ξ
⎢ ⎥
⎢ ⎥≈ + π

λ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫
  (36) 

The results of analytical and numerical 
calculations have shown a high efficiency of 
application of a laser guide star in the form of a wide 

(30)
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collimated beam. The specialized sensor of the 
Hartman type4 allows the reference wave phase to be 
reconstructed as a continuous function. The estimates 
show that the resulting field of the guide source is 
rather close to a plane wave in its parameters. 
Therefore, we obtain a high correction and a 
significant increase of the Strehl parameter, which 
indicates indirectly a good correction of higher modal 
components, which are poorly corrected with the use 
of traditional schemes of LGS formation with a 
focused laser beam. The comparative calculations for 
different models of the vertical profile of the 
structure parameter of refractive index have shown 
serious differences in the behavior of correlation radii 
for plane and spherical waves. 

It should be noted that accounting for the 
influence of amplitude and phase fluctuations 
naturally decreases the achievable level of correction. 
The resulting Strehl parameter will be somewhat 
lower than that determined by Eqs. (35) and (36). 
 One more feature of the proposed scheme of 
LGS formation should be noted. The wide collimated 
beam and the specialized wavefront sensor,3,4 the 
each subaperture of which sees only a limited area of 
LGS, erase the problem16–18 of correction of the 
global wavefront tilt with the use of LGS, since the 
jitter of the initial beam, caused by the upward 
propagation from the telescope aperture, does not 
contribute to the jitter of subaperture images. 
Therefore, the summation of local wavefront tilts 
over the whole subaperture array of the wavefront 
sensor can also give a signal for correction of the 
global wavefront tilt. This somewhat facilitates, in 
general, rather complicated scheme of correction with 
the use of LGS, since it is not necessary to use of not 
only the laser guide star, but also a natural star, 
which gives a signal for correction of the global 
wavefront tilt.  
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