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For a function that determines the ratio of the contribution from multiple scattering  
within the frames of small-angle approximation of the transfer theory to a singly scattered signal,  
an asymptotic series by powers of a small parameter is constructed, i.e., the viewing angle of  
the receiver. A connection between the series’ coefficients and microstructural parameters of the 
media is established. Boundaries of applicability of the asymptotic approximation are estimated 
numerically. 

 

 

Introduction 
 

The problem of determining the size of cloud 
droplets by methods of lidar sensing attracts attention 
of specialists in atmospheric optics for a long time. 
Promising tools for solving this problem are lidars 
with a variable viewing angle (MFOV-lidars).1–6  
The signal component that is stipulated by multiple 
scattering (MS) depends on particles’ size. 
Information about the size can be obtained by solving 
the inverse problem for the lidar equation. The 
existing mathematical descriptions of lidar signals 
were obtained from the theory of radiation transfer4,6 
and they are not quite appropriate for practical 
solving of the problem due to complicated analytical 
expressions and laborious calculations. In such cases, 
mathematicians replace the considered function by a 
simpler one obtained by decomposition the former 
into a functional series. 

In descriptions of MFOV-lidar signals the 
quantitative MS measure is often assigned to the 
value of a singly scattered signal. Asymptotic 

decompositions are efficient approximation methods 
for the above-mentioned function, which is given  
as an integral. This approach was developed in the 
theory of laser sensing at multiple scattering on the 
base of analysis of asymptotic behavior of lidar 
signals at large viewing angles.6–8 The opposite case 
is considered in this paper: the viewing angle of the 
receiver is taken as a small parameter to construct an 
asymptotic series by powers of this parameter. The 
relation between coefficients of the series and 
microstructural parameters of the media have been 
determined. The effect of the number of taken into 
account decomposition terms (such as the small-angle 
scattering phase function and optical thickness) on 
the accuracy of the asymptotic approximation is 
estimated numerically. 

1. Formulation of the problem  
and a method for its solution 

1.1. Initial relationships 
 

We consider the following function (correcting 
factor): 

 r r 1 r

0

( ) ( ) ( ) ( ) d ,m z J z F

∞

γ = γ γ ν ν ν∫   (1) 

which determines the relative contribution of 
multiple scattering in a lidar signal when sensing 
media with strong scattering anisotropy, such as 
clouds or a suspension of particles in sea water. The 
designations in Eq. 1 are as follows: γr is the viewing 
angle of the lidar’s receiving system; z  
is the distance from the lidar to the area, in which 
the sensing pulse is backscattered; J1(.) is the Bessel 
function of the first kind of the first order; ν is the 
spatial frequency; 

 ( ) exp[ ( )] –1;F gν = ν  (2) 

 

0

( ) 2 ( – ) ( )d ,

z

g z s x s sν = σ ν∫ �  (3) 

σ(z) is the scattering coefficient at the wavelength of 
sensing radiation λ; ( )x p� is the Hankel transform  

of the small-angle scattering phase function x(γ) 

satisfying the normalizing condition 

0

2 ( ) d 1.x

∞

π γ γ γ =∫  

  The formula (1) follows from the theory of 
radiation transfer within the frames of the wide-
spread model.6,9,10 According to this model, multiple 
scattering is taken into account in the small-angle 
approximation, and the large-angle scattering is 
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accounted in the single approximation. Some additional 
assumptions are as follows: 

– the radiation source is point-like, monodirectional, 
and sends a δ(t)-pulse along the positive direction of 
the Oz axis; 

– the source and receiver of radiation are placed 
in the plane z = 0, and their optical axes are aligned; 
  – the function of the receiver’s sensitivity to the 
angular coordinate has a circular symmetry and a 
step form; 

– spatial variability of a lidar signal in the 
plane of receiving aperture is not taken into account; 
  – variation of the scattering phase function can 
be neglected in the neighborhood of the backward 

direction. 
These conditions and simplifications are not of 

principle for the sequel. They do not restrict generality 
of the results below and can be easily taken into 
account within the framework of the model considered. 
 

1.2. Asymptotical decomposition  
of the correcting factor 

 

The problem is to construct asymptotic series for 
the function m(γr) (1) at γr → 0. The solution of the 
problem is based on asymptotic properties of the 
function F(ν) at ν → ∞. Namely, it is supposed that 
the asymptotic decomposition  

 
1

( ) ,n
n

n

F a

∞

−

=

ν ∼ ν∑  0
n

a ≠ , (4) 

takes place at ν → ∞. 
This property imposes certain requirements upon 

the behavior of the Hankel transform of the phase 
function ( ).x p�  As a rule, these requirements are 

fulfilled for typical models describing the scattering 
in the small-angle area. For instance, in the case of a 
scattering phase function in the approximation of 
Fraunhofer diffraction, the function g(ν) (3) can be 
represented in the following form6 for sufficiently 
large ν: 

 ( ) / .g aν = ν   (5) 

For a homogeneous layer of thickness L in 
scattering by spherical particles, the relation (5) is 
fulfilled as 

 
max

2 /kR Lν ≥ ν =  (6) 

and the coefficient at ν is 

 
16

,
3

a kr= σ

π

 (7) 

where k = 2π/λ; R is the maximum radius of particles; 

σ is the scattering coefficient; 3 2/ ,r r r= 〈 〉 〈 〉  the 

parentheses .〈 〉  denote averaging by the ensemble of 

particles. 
Substituting the expression for g(ν) (5) into 

Taylor’s series for F(ν) (2), we obtain an exact equality 

in Eq. 4 for ν ≥ νmax. A similar result can be obtained 
for the part of the small-angle scattering phase 
function that is formed by laws of geometrical optics. 
  Taking into account Eq. (6), it is convenient in 
the sequel to pass to the dimensionless variables 

 
max

/ ,η = ν ν  
r max

( )zξ = γ ν  (8) 

in Eq. 1 and write it in the form 

( ) ( ),m Iξ = ξ ξ  

0
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∞

ξ = ξη η η∫  1( ) ( )K Jη = η . (9) 

With allowance of this, the function F(η) for 
η ≥ 1 can be decomposed into a series by negative 
powers of η: 
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The decomposition’s coefficients 
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 (11) 

depend on the optical thickness of the layer τ = 2σL 
and ratio of the mean radius of particles r  to 
maximal R. For particles of similar size, r R=  and an 
do not depend on particles’ radius. 

We briefly present the algorithm for construction 
of the asymptotic series for the integral term I(ξ) in 
Eq. (9) as ξ → 0 [Ref. 11]. First, let us define the 
functions F–n(η) and Kn(η), for which the following 
recurrence relations take place: 

 1( ) [ ( ) / ];
n n n

F F a
− − +

η = η η − η  (12) 

 1

1 1( ) [ ( ) (0)];
n n n

K K K
−

− −

η = η η −  (13) 

 0( ) ( ),F Fη = η  0( ) ( ),K Kη = η  n = 1, 2, … . (14) 

Then divide the domain of integration in Eq. 9 
into two intervals with the cutpoint at η = 1. 
Further, we subtract the first term of the series (10) 
from F(η), and the zero value K(0) of the kernel 
K(η) = J1(ξ) from the kernel. As a result, rearranging 
the summands and adding necessary compensating 
terms, we can obtain the following representation for 
the integral I(ξ) (9): 

 0 0 1 0 1( ) ( ) ( ),I b A a B Iξ = + ξ + ξ ξ  (15) 
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and bn = Kn(0). Note that bn are coefficients of 
decomposition of the kernel K(η) into a power series 
(in this case, they are coefficients of the series 

1

0

( ) ).k
k

k

J b

∞

=

η = η∑  A similar procedure is applied to 

I1(ξ), which is contained in the right side of Eq. 15. 
Finally, we come to the following asymptotic 
decomposition of the integral I(ξ) by powers of the 
small parameter ξ: 

 
0
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n

I D

∞

=

ξ ∼ ξ ξ∑  0;ξ →  (19) 

 1( ) ( ).
n n n n n

D b A a B
+
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The coefficients an and An depend on F(ν), and 
the coefficients bn and Bn are defined by the form of 
the kernel K(η). To pass to m(γr), we should 
multiply the series (19) by ξ and return to the former 
variable 

 
r

.
2

L

z kR

ξ
γ =  (21) 

Let us consider the first term of the series (19). 
It corresponds to the expression (15) with a rejected 
last summand which defines error of this 
approximation. For the kernel K(η) = J1(η) we have 
b0 = 0, B0(ξ) = 1, I(ξ) = a1, and, as a result, we 
obtain the following formula: 

 
1 r r

8
( ) ,

3

z
m kr

L

⎡ ⎤γ = τ γ⎢ ⎥π⎣ ⎦
 (22) 

according to which the correcting factor m(γr) in the 
first approximation of the asymptotic decomposition 
is a linear function of the angle γr and increases 
proportionally to optical thickness of the media τ and 
mean particles’ radius .r  

It is useful to compare the obtained result with 
that of the theory of lidar sensing with allowance  
of only one scattering act by small angles (since 
sounding also takes into account single scattering by 
small angles, this is an approximation of double 
scattering). For this approximation, the following 
expression was obtained in Ref. 12: 

 ˆ

r
( )m γ
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Here 
r

( / ) .z Lγ = γ�  Decomposing ˆ

r
( )m γ  (23) into 

Taylor’s series in the neighborhood of the point 
γr = 0 and restricting ourselves by the square 
approximation, we obtain 
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It can be shown6 that for the small-angle 
scattering phase function the following relations hold: 

 (D)
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π

∫  (D) 2 21
(0) ,

4
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π

 (25) 

where 2 4 2
/r r r= 〈 〉 〈 〉 , are valid in the diffraction 

approximation x(γ) = x(D)(γ). 
Comparing Eqs. 22 and 24, it is easy to see that 

they are quite identical if the square term in Eq. 24 
is not taken into account. Thus, we can come to the 
conclusion that multiple scattering is not taken into 
account in the first term D0(ξ) of the asymptotic 
series (19), which is defined by the linear 
contribution of single small-angle scattering. This 
fact is a corollary of vanishing of the coefficient 
b0 = 0 in decomposing the Bessel function J1(η) into 
a series. 

In contrast to D0(ξ), the following term of the 
series (19) D1(ξ) = b1À1 + à2B1(ξ), in which b1 = 1/2, 
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contains information about scattering of any 

multiplicity. The integrals in Eq. 28 are defined 
numerically, and their sum approximately equals 
0.308. Finally, for the function B1(ξ) we obtain a 
simple formula 

 1( ) 0.308 – (1/2)ln .B ξ = ξ  (29) 

It is easy to establish the connection between 
D1(ξ) and approximation (24), if to replace the 

function F(η) in Eq. 26 by the function g(η) and 
equate all the coefficients an but a1 to zero. It turns 
out that allowance of the second term of the 
asymptotic series (19) leads to a result coinciding 
with the square correction in Eq. 24. This example 
indicates serviceability of the asymptotic 

decomposition (19) for small optical thickness within 
the frameworks of the double scattering 
approximation. In the following section we present 
the estimate of efficiency for application of the series 
(19) with allowance for multiple scattering in the 
general case on the base of comparison with results of 
numerical calculations by formula (1). 

 

2. Results of numerical simulation 
 
Application of the considered asymptotic 

decomposition to describing multiple scattering in a 
lidar signal requires estimations of accuracy and 
limits of applicability. For this purpose, by the use of 
asymptotic formulas that were presented in the 
previous section, functions m(γr) were calculated and 
compared with the results of control calculations 
performed by the initial formula (1). A plane 
homogeneous layer formed by particles of radius 
R = 10 μm and having constant optical characteristics 
was considered as a model media. The distance from 
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the nearest boundary of the layer was 1 km, 
z = 2 km, λ = 0.55 μm. Numerical study considered 
influence of the order of the asymptotic 

approximation and that of optical thickness in the 
interval 1 ≤ τ ≤ 4, as well as the scattering phase 
function of the media. The phase function was 
considered both in the approximation of Fraunhofer 
diffraction x(γ) = x(D)(γ) and under additional 
allowance of its geometry-optical component. 

The results of calculations are presented in 
Figs. 1–4. Figure 1 presents three first summands of 
the asymptotic series (19) multiplied by ξ (curves 1, 
2′, and 3′) as a function of the angle γr. Curves 2 and 

3 represent the sum of two and three such summands, 
respectively. These functions are obtained for the 
scattering phase function in the D-approximation, 
x(γ) = x(D)(γ). They permit one to estimate the 
contribution of terms of different order into partial 
sums of the series (19). 

 

0 2 4 6 8 γr, mrad 
–1 
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0 

0.5 
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1
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τ = 2 

γr, mrad  
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Fig. 1. Angular dependencies of partial sums (curves 1–3) of 
the asymptotic series for the function m(γr) and its linear (1), 
square (2′), and cube parts (3′) for two values of optical 
thickness; diffraction approximation. 

 

The linear term (curve 1) makes main contribution 
into the sum at a small optical thickness (τ = 1, 
Fig. 1a) and angles γr < 5 mrad. The influence of the 
square (curves 2, 2′) and cube (curves 3, 3′) terms 
decreases with increase of their order and becomes 
appreciable for γr > 5 mrad. It should be noted that 
the curve 2′ goes to the range of negative values at  
a small optical thickness beginning with γr, which are 

a little greater than 4 mrad. This is caused by the 
influence of logarithmic dependence of the coefficient 
B1(ξ) (29), which changes its sign at ξ = 1.85.  
For the simulation conditions, this corresponds to  
the angle γr = 3.9 mrad. As a result, allowance for  
the square term leads to lowered deviation of the 

approximation curve 2 with respect to linear 
approximation (curve 1). 
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τ = 1 
m(γr)

 
Fig. 2. Comparison of the dependencies m(D)(γr) calculated 
by the initial formula (1) (curve 1) and asymptotic formulas 
in linear (2), square (3), and cube (4) approximation; the 
curve 5 is approximation of double scattering. 
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Fig. 3. Angular dependencies m(γr) with allowance for the 
geometrical optics component of the scattering phase 
function (1) and without it (2); solid lines show the 
calculation by exact formulas in the small-angle 
approximation; dashed lines denote the calculation by 
asymptotic formulas in the square approximation. 

 
With allowance for the cubic summand that 

makes a negative contribution at any γr, the deviation 
is even larger (curves 3, 3′), because b2 = 0 and 
B2(ξ) = const = –1/3 for the coefficient of the 
asymptotic series D2(ξ) = b2À2 + à3B2(ξ). So, the final 
expression for the cube term is 

 3 3

2 1 r–(1/18)[ ( )] ,D mξ = γ  (30) 

where m1(γr) describes the linear part of the asymptotic 
approximation according to the formula (22). The 
coefficient an is defined by small-angle scattering of 
multiplicity n. Therefore, it can be considered that 
the cube term of the asymptotic series is defined by 
the small-angle triple scattering. Its contribution 
increases the proportionally to the third powers of 



898   Atmos. Oceanic Opt.  /November  2007/  Vol. 20,  No. 11 V.V. Veretennikov 
 

 

mean particles’ radius and optical thickness. This can 
be observed in comparison of the curves 3 and 3′ in 
Fig. 1. Within the frameworks of the approximation 
considered, the cube term, as is seen from Fig. 1b, is 
a single factor that makes a negative contribution 
into the partial sum of the asymptotic series with 

increase of the optical thickness. 
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Fig. 4. Linear (2), square (3), and cube (4) approximations 
of the function m(γr) by an asymptotic series; 1 denotes 
calculation by exact formulas in the small-angle approximation; 
5 is double scattering approximation; calculation without 
(dashed lines) and with allowance for the geometry optics 
component of the phase function (solid lines). 
 

Figure 2 visualizes the relation between the exact 
behavior of m(γr) = m(D)(γr) (curve 1) and its 

approximations as partial sums of the asymptotic 
series (curves 2–4). For comparison, we present the 
function ˆm

(D)(γr) (23) in the approximation of double 
scattering (curve 5). As is seen from Fig. 2, the square 
approximation (curve 3) provides for high accuracy 
up to γr = 9 mrad (δ = 5.5%, δ is the relative error). If 
we, in addition, take into account the cube term 
(curve 4), we obtain a little increase in accuracy, but 
only in a more narrow range of viewing angles, and 
the error δ exceeds 6% already at γr > 6. 

Besides, it is interesting to note the following 
fact. As stated above, the linear part of the asymptotic 
approximation (22) coincides with that of approximation 
of double scattering (24). They are shown in Fig. 2 
by the line 1, which appreciably diverges even for small 
γr from ˆm

(D)(γr) (curve 5) calculated by the formula 
(23). However, it remains sufficiently close to the 
exact dependence m(D)(γr) (curve 1) till γr = 4 mrad. 
  The above-mentioned properties of the asymptotic 
decomposition of m(γr) remain valid if we add  
the geometrical optics component to the scattering 

phase function. For instance, the dependencies m(γr) 
calculated by exact formulas (solid lines) and by 
asymptotic formulas of the second order (dashed lines) 
for scattering phase functions with contribution of 
the geometrical optics component (curves 1) and 
without it (curves 2) are compared in Fig. 3. As is 
seen from the presented results, the range of angles γr, 
for which the asymptotic decomposition provides 

acceptable accuracy, essentially does not depend on 
the choice of a model for the small-angle scattering 
phase function. 

Figure 4 presents the behavior of partial sums of 
the asymptotic series with increase of optical thickness 
τ. Comparing the results (Fig. 4a) for τ = 2 with  
the case considered above (τ = 1; see Figs. 2 and 3), 
one can see the following features. First, the domain 
of viewing angles, in which it is possible to be 
satisfied by a linear approximation (presented in 
Fig. 4a by lines 2 for two types of scattering phase 
functions) is considerably narrowed (less than 1 mrad) 
with increase of τ. Neglect by scattering of high 
multiplicity, which begins to play a significant part 
for τ = 2 and sufficiently large γr, in the linear 
approximation causes a lower position of lines 2 
relative to exact dependencies m(γr) (curves 1). 

The square approximation also does not provide 
for sufficient accuracy and leads to excessive values 
of m(γr) (curves 3). Finally, if the negative cubic 
term is taken into account, it compensates the 
influence of the first two summands and, as a result, 
the error of such approximation decreases, for 
instance, to 10–11% at γr = 7 mrad (with variations 
in the choice of the scattering phase function). 

These trends manifest themselves even to a greater 
extent with increase of optical thickness and can be 
illustrated by calculations of the function m(γr) 

presented in Fig. 4b at τ = 4. With allowance for  
the cubic term, the approximation error decreases in 
this example from 58–72 to 2–6% for γr = 9 mrad 
depending on the type of the scattering phase function. 

 

Conclusions 

 

We considered a new mathematical model 
intended to determine the contribution of multiple 
scattering (correcting factor) in lidar signals in 
sensing dense media. 

The well-known integral expression for the 
correcting factor obtained within the frameworks of 
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small-angle approximation with allowance for single 

scattering by large angles was taken as the initial. By 
the use of the method of consequent decomposition 
for the correcting factor we have constructed an 
asymptotic series by powers of a small parameter, the 
viewing angle of a lidar’s receiver. The construction 
is based on taking into account of properties of the 
optical transfer function in the range of high spatial 
frequencies. The coefficients of the asymptotic series 
are shown to depend on integral parameters of the 
media’s microstructure and can be easily calculated 
by simple analytical formulas. In particular, for all 
odd terms of the decomposition the only of such 
parameters is mean particles’ radius defined by ratio 
of the third moment of the distribution function of 
particles’ size to the second moment. 

The accuracy and limits of applicability of the 
developed asymptotic model are estimated by 

numerical simulation. In particular, not more than 
three terms of the asymptotic series turned to be 
sufficient to take into account the contribution of 
multiple scattering in lidar signals in sounding droplet 

clouds. The error of the asymptotic approximation does 
not exceed 5–10% for viewing angles less than 
9 mrad. These estimates are valid for the small-angle 
scattering phase function both in the diffraction 
approximation and with allowance for the geometrical 
optics component. Optical thickness also has a weak 
effect on the accuracy of the asymptotic approximation 
in the range of the considered values from 1 to 4. 

The considered asymptotic approximation for the 
correcting factor can be applied to developing 
algorithms for recovering cloud droplet sizes from 
lidar measurements. 
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