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Basic qualitative regularities for all elements of the scattering matrix are considered in the 

case of scattering by hexagonal ice plates oriented in the horizontal plane. For parhelic and 
subparhelic circles, it is shown that polarization of light scattered in the angles from sundog to 120° 
parhelion is similar to that of incident light. A method is proposed for diagnostics of ice plate 
thickness from ground-based polarization measurements within sundog with the use of a laser source 
with circularly polarized light. 

 

1. Scattering matrix 
 
In the general case, light polarization is 

determined by three real parameters. In particular, 
the Stokes vector parameters I = (I, Q, U, V), where 
I is the intensity, and Q and U determine the linear 
polarization, while V determines the circular 
polarization, are used most widely. In the previous 
paper,1 we have considered only the intensity I of the 
light scattered at horizontally oriented ice plates and 
in the case of the fully nonpolarized incident light 
(Q = U = V = 0). In this paper, we consider all 
polarization characteristics of the scattered light at 
the arbitrary polarization of the incident light. 

In the problem of light scattering by an isolated 
particle, the light I(n) scattered in the direction n  

is related to the incident light I0(n0) through the 
matrix Z: 

 0 0 0( ) ( , ) ( ).=I n Z n n I n  (1) 

Equation (1) should be complemented with 
determination of two arbitrary coordinate systems, in 
which the vectors I(n) and I0(n0) are specified. 
Currently, in scattering theory a commonly accepted 
terminology for the matrix Z is absent. Thus, if both 
coordinate systems are fixed, then Z is referred to in 
the international literature as a phase matrix2 or 
Mueller matrix,3 whereas the term scattering matrix 
is used for the matrix related to the scattering plane, 
that is, to the plane drawn through the vectors n and 
n0. Following Ref. 4, we call Z the scattering matrix. 
  In the case of light scattering by horizontally 
oriented particles, it is convenient to use the 
coordinate system determined in the following way. 
At the sphere of scattering directions n, select two 
polar points corresponding to scattering in the 
forward θ = 0 and backward θ = π directions. Then 
the zero meridian ϕ = 0 is selected arbitrarily, and the 
azimuth angle is measured clockwise from this 
meridian as viewed from the center of the sphere in 

the direction of the forward scattering. Then for every 
direction of scattering n = (θ, ϕ), in the plane tangent 
to the sphere it is possibly to define uniquely the 
unit zenith eθ and azimuth eϕ vectors directed toward 
the increase of the zenith θ and azimuth ϕ angles. 
Three vectors n, eθ, and eϕ form the right-hand set of 
vectors according to the relation n = eθ 

×
 

eϕ. These 
vectors form the basis for representation of the 
scattered electric field in the form of the zenith 
Eθ(θ, ϕ) and azimuth Eϕ(θ, ϕ) components. The 
Stokes parameters in this basis can be determined as2: 
 

 
22
;I E Eθ ϕ= +  

22
– ;Q E Eθ ϕ=  

 ( )* *

– ;U E E E Eθ ϕ ϕ θ= +  ( )* *

– – .V i E E E Eθ ϕ ϕ θ=  (2) 

It should be noted that the usual3–5
 definition of 

U and V differs from Eqs. (2) by the opposite sign, 
but the numerical values of the Stokes parameters 
coincide, since the basis vector eϕ in Refs. 3–5 has 
the opposite direction. Now consider the incident light 
I0(n0). The direction of propagation of the incident 
light n0 can be shown in the sphere of scattering 
directions as a vector directed from the point 

n0 

= (θ0, ϕ0) to the sphere center. Then the Stokes 
parameters I0 are determined similarly to those for 
the scattered field, but with the vector eθ replaced 
with the vector (–eθ) in order to preserve the right-
hand system of the basis vectors for the light 
propagating in an arbitrary direction. 

The scattering matrix fully determines all light 
scattering properties of a particle with accounting for 
any states of polarization of the incident light. This 
matrix is convenient for numerical calculations, but 
physical meaning of its components Zij is not clear, 
that complicates their interpretation. Therefore, we use 

another equivalent matrix, whose physical meaning is 
more obvious. For this purpose, we divide the initial 
scattering matrix into a set of four columns, which 
can be interpreted as some four Stokes vector 

parameters Zij = (Z1j, Z2j, Z3j, Z4j) = (Z1, Z2, Z3, Z4). Then 
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we form a new equivalent matrix Yij through 
constructing four new columns by the following rule: 
 

 

 Y1 = Z1, Y2 = Z1 + Z2, 

 Y3 = Z1 + Z3, Y4 = Z1 + Z4. (3) 

Then the columns Yi have the meaning of the Stokes 
parameters at the incident light with unit intensity. 
In particular, Y1 corresponds to fully nonpolarized 
light (I0 = 1, Q0 = U0 = V0 = 0), while three other 
columns Y2, Y3, and Y4 

correspond to fully polarized 
light. Here Y2 corresponds to the linear polarization 
along the vector eθ (I0 = Q0 = 1, U0 = V0 = 0), Y3 
stands for the linear polarization at an angle of 45° 
(I0 = U0 = 1, Q0 = V0 = 0), and Y4 is for the circular 
polarization in the incident light (I0 = V0 = 1, 
Q0 = U0 = 0). Thus, all elements of the matrix Yij 
have a simple physical meaning and can be measured 
directly in the experiment. Usually, the elements of 
the matrix Zij presented in the literature are 
normalized to the first element of the first column, 

that is, Z′ij = Zij 

/Z11. In our new matrix, to preserve 
the above physical interpretation, we normalize the 
second, third, and fourth elements of each column to 
the first element of this column, that is, 

 Mij = Yij 

/Y1j. (4) 

Then the first element in the j-th column of M is the 
intensity of light scattered in the direction n at the 
given polarization of the incident light, while three 
other dimensionless elements determine the 

polarization of the scattered light. In particular, the 

degrees of the linear p
l

j and circular p
c

j polarizations 
used in practice are determined by the equations  

 l 2 2
2 3 ,j j jp M M= +  c

4 .j jp M=  (5) 

The normalized matrix M determined by Eq. (4) 

is an object of our calculations. Certainly, at the 
known scattering matrix M, it is easily to pass to the 
traditional scattering matrix Z through the linear 
transformation, inverse to Eqs. (3). 

Note some features of calculation of scattering 
matrices. It is obvious that within the framework of 
the geometric-optics approximation, the scattered 
light near the crystal surface is a superposition of 
plane-parallel beams. Each beam is characterized by 
its own trajectory of photons, that is, a sequence of 
collisions with certain crystal sides. Correspondingly, 
it is natural to calculate the scattering matrix as a 
sum of scattering matrices for all beams calculated by 
the well-known geometric-optics algorithms. However, 
this procedure calls for some explanations. For this 
purpose, we consider first the light scattering at a 
crystal with fixed orientation. 

For different trajectories of photons, the 

scattering directions usually differ. However, there 
are sets of “related” trajectories (or beams) having 
the same scattering direction. For example, any 
parallel crystal sides form sets of related trajectories, 
which are well-known for plane-parallel plates.5 As it 
is known, at fully polarized incident field and at a 

fixed orientation of a particle, the scattered field 
should be fully polarized as well. Therefore, we should 

sum up the contribution from related trajectories at a 
level of 2×2 Johns matrices, rather than Z or Y (note 
that the non-normalized 4×4 matrices should be 
summed). In other words, in terms of 4×4 scattering 
matrices, we should sum both the scattering matrices 
themselves, obtained for different trajectories, and 
the matrices determining the interference between 
corresponding fields. However, if the phase incursions 
for trajectories differ significantly, the interference 
between the scattered light beams can be neglected. 
Actually, in this case the interference terms give, on 
average, zero for statistical ensembles with a crystal 
size spread. Therefore, we directly summarize the 4×4 
scattering matrices for related photon trajectories. 
Since non-related trajectories at a fixed orientation of 
a crystal give different scattering directions, the 
interference does not appear for them. Therefore, in 
statistical averaging of the scattering matrix over 
crystal orientations, the summation of 4×4 scattering 
matrices for non-related trajectories is a physically 
rigorous procedure. However, for related trajectories, 
such summation is true accurate to interference terms. 
 

2. Scattered light polarization 
at polarized and nonpolarized  

incident light 
 

Our task is to calculate the scattering matrix for 
a horizontally oriented hexagonal ice plate at 
statistical averaging over the angles of plate rotation 
about the vertical axis. In the previous paper,1 we 
have considered in detail the intensity of the light 
scattered along three main scattering circles. The 
data obtained were represented as a set of plots at 
several fixed values of both zenith angle of light 
incidence θ0 and the shape parameter of the plate 
F = h/2H (in the international literature, the 
parameters F, in which h is the plate thickness and  
H is the length of hexahedron side, is referred to as 
an aspect ratio). Due to the limited volume of this 
paper, it is impossible to present all analogous plots 
for the scattering matrix. Therefore, we consider main 
qualitative regularities obtained for scattering matrices 
for the parhelic and subparhelic circles at the light 
incidence angle θ0 = 75° and the shape parameter 
F = 0.4 taken as an example. The plots obtained for 
elements of the scattering matrix Mij(ϕ) are shown in 
Fig. 1. 

Note that all elements of the matrix Mij(ϕ) are 
shown in Fig. 1 for the range of scattering angles  
[0–180°]. In the remaining range [180–360°], the 
elements of the scattering matrix for the first two 
columns are determined by the symmetry Mij(ϕ) = 
= Mij(360° – ϕ) (for elements M11, M21, M12, M22) or 
antisymmetry Mij(ϕ) = –Mij(360° – ϕ) (for elements 
M31, M41, M32, M42). For the third and fourth 

columns, these relations are not fulfilled, but they 
are true for all columns of the initial matrix Z of 



882   Atmos. Oceanic Opt.  /November  2007/  Vol. 20,  No. 11 A.V. Burnashov and A.G. Borovoi 
 

 

Eq. (1) [Ref. 9], which allows other elements of the 
matrix Mij(ϕ) to be easily constructed in the range 
[180–360°]. 

As is seen from Fig. 1, the scattered light 

intensities in the parhelic and subparhelic circles 
include singularities and sharp peaks, considered in  
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Fig. 1. Scattering matrix Mij(ϕ) of a hexagonal plate for parhelic (a) and subparhelic (b) circles: intensity of scattered light  
I (solid curve), component Q linearly polarized at an angle of 0° (dashed curve), component U linearly polarized at an angle  
of 45° (dots), circularly polarized component V (dot and dash curve). The right ordinate plots the intensity, while the left one 
shows polarization; fully nonpolarized incident light (first row), light linearly polarized at an angle of 0° (second row), light 
linearly polarized at an angle of 45° (third row), and circularly polarized incident light (fourth row). 
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detail in Ref. 1, whereas other elements of the 

scattering matrix, describing polarization, appear to 
be rather smooth functions. The variety of the circles 
Mij(ϕ), where i ≥ 2, can be easily interpreted based 
on the following two physical facts. First, our 
calculations have shown that the number of scattered 
beams contributing significantly to this scattering 
angle is small: about three. The photon trajectories 
characterizing each beam have no more than three 
collisions. Second, it is obvious that the greater is the 
number of collisions in a given photon trajectory, the 
stronger, on average, the degree of polarization in the 
scattered beam differs from the polarization of the 
incident radiation and, to the contrary, the smaller is 
the cross section of the scattered beam, that is, the 
smaller is its contribution to the total intensity of the 
scattered light. 

Let us divide the scattering angles into several 
characteristic intervals and begin the consideration 
from the interval of angles for the sundog peak. 
Here, as was already mentioned,1 the major contributor 
is the trajectory with two collisions, when a photon 
passes through a dihedral angle of 60°. Then, between 
the sundog region and 120° parhelion, the analogous 
trajectory with three collisions, in which a photon 
additionally collides with a vertical side, becomes 
dominating. Trajectories with a large number  

of collisions contribute to large scattering angles  
[120–180°]. As it was seen earlier,1 when discussing 
the peak at 150°, such trajectories contribute to their 
own narrow ranges of scattering angles, which often 
do not overlap. 

The above physical reasoning allows the form of 
the functions Mij(ϕ), where i ≥ 2, to be easily 
interpreted. Start the discussion from the case of 
fully nonpolarized incident light for the parhelic and 
subparhelic circles. As can be seen from the first row 
of Fig. 1, the elements of the scattering matrix M21, 
M31, and M41 are small here, starting from the sundog 
peak and to 120° parhelion. This is explained by the 
fact that the number of photon collisions in 
trajectories contributing significantly to this range of 
angles is small. As a result, the polarization of the 
scattered light only slightly differs from the 
polarization of the incident radiation. In the angular 
range 120–180°, the degree of polarization somewhat 
increases and oscillates. However, the maximum of 
polarization often falls on the minimum of intensity, 
which is characteristic of photon trajectories with a 
large number of collisions. That is why such 
polarization can be hardly observed experimentally. 
  It remains for us to consider the angular range 
between the direction of forward scattering and 
sundog. Here, in parhelic circle, relatively low 
intensity of the scattered light results from the trivial 
single light reflection from vertical crystal sides. In 
the subparhelic circle, such a trajectory does not 
exist, and this interval of scattering angles is filled 
due to some trajectory with 6 collisions, which is 
omitted here for brevity. Although the polarization in 
this beam sharply increases due to the large number 

of collisions, the area of the beam leads to the 
negligibly low scattered light intensity. Therefore, 
the so strong polarization in the subparhelic circle in 
the angular range 0–22° is of no practical interest. 
  Thus, we can draw the following general 
conclusion: when horizontally oriented ice plates are 
irradiated by nonpolarized light, the degree of 
polarization in the scattered light is low and the 
polarization measurements in this case show no 
promises from the viewpoint of obtaining information 
about crystal parameters. 

Now we pass on to the irradiation of plates by 
fully polarized light, that is, to elements of the 
scattering matrix Mij(ϕ), where i, j ≥ 2. At fully 
polarized incident light, the following regularities 
should be observed for the scattered light. First, if 
only one trajectory significantly contributes to the 
given scattering angle, then the scattered light also 
should be fully polarized, that is, the degree of 
polarization Pj is equal to unity: 

 l 2 c 2( ) ( ) 1.j j jP p p= + =  (6) 

If we have a sum of contributions from beams 
with different trajectories, then the degree of 
polarization decreases: Pj < 1. Thus, from the 
experimentally measured degree of polarization of the 
scattered light we can extract the information about 
the number of photon trajectories, efficiently 
contributing to this direction of scattering. 

Second, the degree of polarization can sometimes 
reach zero, that is, we obtain fully nonpolarized 
scattered light at fully polarized incident light. In 
particular, scattered light in Fig. 1 is fully 
nonpolarized in the parhelic circle at the scattering 
angle ϕ ≈ 133° with incident light polarized linearly 
at an angle of 0°. To illustrate this fact, Figure 2 
shows that three trajectories contribute significantly 
to this scattering angle. Trajectory 1 corresponds to 

the trivial reflection from the vertical side. In 
trajectory 2, the light enters through the horizontal 
side, reflects from the vertical side, and exits through 
the opposite horizontal side. In trajectory 3, the light 
enters through one vertical side, reflects from the 
other, and exits through the third vertical side. 
Figure 2 shows the element of the matrix M22(ϕ) for 
each trajectory and for total radiation. As follows 
from Fig. 2, here the elements with the same signs of 
the non-normalized scattering matrix Y22(ϕ) [see 
Eq. (3)] for trajectories 1 and 3 are summarized, 
whereas for trajectory 2 the signs are opposite, which 
gives zero in sum. Analogously, as follows from 
Fig. 1, other two elements M32 and M42 also vanish 
in the total radiation at a scattering angle of 133°. 
  As to the qualitative behavior of Mij(ϕ), where 
i, j ≥ 2, it is similar to the case of fully nonpolarized 
incident light, which was considered above. Namely, 
in the region of the sundog peak, the polarization of 
the scattered light differs only slightly from the 
polarization of the incident radiation. Then, in the 
angular range up to 120°, the polarization varies 
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smoothly, which corresponds to the predominant 
trajectory with three collisions mentioned above. In 
the angular range 120–180°, the matrix elements 
oscillate due to superposition of trajectories with a 
large number of collisions. 
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Fig. 2. Three trajectories contributing significantly near the 
scattering angle ϕ = 133°. Figure shows the element of the 
scattering matrix M22(ϕ) for each trajectory and (solid 
curve) the element M22(ϕ) for the total radiation. 

 

3. Determination of the plate shape 
parameter from polarization 

measurements of scattered light 
 

Let us consider the problem of light scattering at 
ice plates, chaotically oriented in the horizontal plane 
from the viewpoint of inverse problems, that is, from 
the viewpoint of reconstruction of particle parameters 
from the radiation scattered by the particles. As was 
shown in the previous section, the polarization of the 
scattered light at the nonpolarized sensing radiation 
is insignificant. Therefore, the ground-based 

polarization measurements, for example, in the parhelic 
circle appearing as the sunlight passes through cirrus 
clouds, are not promising. For polarization 

measurements of the scattered radiation, a source of 
polarized radiation (laser) is necessary. 

By now there appear much literature, where 
backscattering radiation of lidar signals is used for 
polarization diagnostics of cirrus clouds.6–8 At the 
same time, the backscattered light, first, has low 
intensity and, second, carries less information as 
compared to other scattering directions. In this section 
we consider a possibility of reconstructing the shape 
parameters F of plates from polarization measurements 
at the optimally selected incidence and scattering 
angles. If a ground-based laser source of radiation is 
used for diagnostics of crystalline particles in the 
atmosphere, then the scattered light recorded on the 
ground corresponds to the subparhelic circle. 

Assume that for ice plates existing in the 
atmosphere the shape parameters F = h/2H lie in the 
range [0.1–0.4]. Consequently, we have to select the 
optimal values of the incidence and scattering angles 
for the subparhelic circle, in which the elements of 
the Mij(ϕ) at i, j ≥ 2 are most sensitive to variations 
of F in the given range. In the subparhelic circle, the 
main part of the scattered light is concentrated in 
four narrow peaks, among which the main peaks are 
sundog and the peak of forward scattering 

corresponding to the mirror-reflected component of 
the scattered light. Just these peaks are considered in 
this section from the viewpoint of scattering inverse 
problems. 

The formulation of such inverse problem is based 
on the following physical reasoning. In general case, 
if the given photon trajectory includes no events of 
total internal reflection, then the linearly polarized 
incident light is transformed into the scattered light, 
which is also linearly polarized. The component with 
circular polarization can appear in this case only due 
to total internal reflection, which appears at hexagonal 
sides of a plate at incidence angles π/2 – θ* < θ0 < θ*, 
where θ* ≈ 58° [Ref. 1]. It can be easily found from 
geometric consideration that at F = 0.4 and the 
incidence angle θ0 ≈ 34° the trajectory with only one 
total internal reflection takes place. In this case, the 
light enters through a crystal lateral side, reflects 
from its hexagonal side, and exits through another 
lateral side at the third collision. Then, as F decreases, 
the trajectories with three, five, and more total 
internal reflections at horizontal sides appear and 
become predominate. 

Thus, the scattered component with the circular 
polarization increases stepwise with F decrease. Just 
this dependence can be used for diagnostics of the 
plate shape. This qualitative reasoning was checked 
and implemented in our calculations. 

Figure 3 depicts the elements of the scattering 
matrix in sundog (near its left sharp edge) at variation 
of a plate shape parameter Mij(F) for incident light 
with linear and circular polarizations. 

We can see the two-stage character of the curves 
in all the plots, where one stage in the region of 
F = 0.4 corresponds to the trajectory with one total 
internal reflection, while another in the region of 
F ≈ 0.2 corresponds to the prevailing contribution 
from the trajectory with three total internal 
reflections. The linear and the steepest function Mij(F) 
is optimal for the problem of reconstruction of a 
plate shape parameter from the experimentally 

measured element of the scattering matrix. The element 
Ì44(F) best corresponds to this criterion. 

Thus, the following scheme can be proposed for 
the polarization diagnostics of the shape parameter F. 
The incident radiation should be circularly polarized, 
and the component with the circular polarization 
should be detected in the scattered light. The range 
of incidence angles in this case should be narrow, 
within 34–36°, since as it is seen from Fig. 3, starting 

from the scattering angles θ0 ≈ 36°, the quasilinear 
character of the functions Mij(F) is broken. 
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Fig. 3. Polarization in sundog as a function of the shape parameter of a plate; the left column corresponds to the radiation 
linearly polarized at an angle of 0°, and the right column corresponds to the circularly polarized radiation: zenith angle of 
incidence θ0 = 34° (solid curve), 35° (dashed curve), 36° (dotted curve), and 42° (dash-and-dot curve). 
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Fig. 4. Polarization at the peak of forward scattering as a function of the shape parameter of a plate for the incident radiation 
linearly polarized at an angle of 45° (a) and circularly polarized (b); incidence angle of 34°; M23 and M24 elements of the 
scattering matrix (dashed curves), M33 and M34 (dotted curves), and M43 and M44 (dash-and-dot curves). 
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The analogous quasilinear character of Mij(F) 

due to trajectories with total internal reflection from 
horizontal sides could be also expected in the peak of 
forward scattering. However, in this case these 
trajectories are supplemented with the trajectories, in 
which photons either directly reflect from the 

horizontal side or enter a plate through the horizontal, 
rather than vertical, side. Figure 4 demonstrates that 
the contribution of these trajectories distorts the 
quasilinear dependence of Mij(F) and the peak of 
forward scattering appears to be unpromising from 
the viewpoint of F reconstruction from polarization 
measurements. 
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