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The mean power of a partly coherent laser beam scattered at an aerosol atmospheric layer is 
analyzed numerically. The combined transceiving optical scheme with a circular exit aperture and a 
round receiving aperture is considered. It is shown that the mean power of the scattered radiation 
depends on the initial spatial coherence of the beam and varies with distance to the scattering layer 
because of diffraction at the exit aperture. 

 

During propagation through the atmosphere, 
laser beams experience distortions due to turbulent 
fluctuations of the refractive index of air. To correct 
these distortions, modern optical systems include a 
feedback loop with a reference source, whose 
radiation carries information about wave distortions 
on a propagation path and is used for adaptive 
control over parameters of propagating laser beams. 
Either specialized artificial reflectors or independent 
laser sources are commonly used as reference sources.  
 Along with turbulent distortions arising upon 
propagation in the atmosphere, high-power laser 
radiation experiences phase fluctuations and 
uncontrollable field distortions at the part of 
formation of the output beam between a source and 
the transmitting aperture. This worsens spatial 
coherence of laser beams and leads to additional 
beam broadening and reduction of the efficiency of 
laser energy transfer to the given distance. When 
propagating along high-altitude paths, these 
“natural” fluctuations of laser radiation may prevail 
over atmospheric distortions, and the problem of 
their removal becomes urgent. To correct distortions 
arising at the stage of laser beam formation, it was 
proposed to use a natural target – atmospheric 
aerosol – as a source of the reference wave.1 The 
laser beam radiation scattered by aerosol particles 
carries information about beam distortions and can be 
used to control output parameters of the beam.  

This paper presents the results of calculation of 
the mean received power (intensity flux) of a partly 
coherent pulsed laser radiation scattered at an 
atmospheric layer as a function of angular divergence 
of the irradiating beam and spatial coherence of the 
initial field. The calculations are performed for the 
combined optical scheme of a transceiving system 
with a circular exit and a round receiving apertures. 
The model of a phase screen with the Gaussian phase 
correlation function is used as a model of distortions 
of the initial field. 

1. Computational relationships 

Consider an optical system with the combined 
transceiving optical scheme and a pulsed laser source 
(see, for example, Fig. 1 in Ref. 2, as well as Ref. 3). 
Assume that the control signal for correction of 
distortions is generated based on measurements of the 
mean power Ps of radiation backscattered at an 
atmospheric layer lying at a distance z from the 
source. The laser irradiates the aerosol layer through 
the circular exit aperture with the radii a, b = a/M, 
where M > 1, is a numerical coefficient. The field 
formed by the exit aperture has a wavefront 
curvature F with angular half-divergence of the beam 
α = a/F. The backscattered radiation is received on a 
round aperture with the radius a0 and the focal 
length f. A photodetector of the radius ad lies in the 
focal plane of this aperture. The scattering occurs in 
a thin layer of the thickness Δz, so that Δz << z, 
randomly filled with particles having sizes smaller 
than the radiation wavelength rs < λ. 

The field of the partly coherent beam at the exit 
aperture  can be represented  in the  following  form: 
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σ2 is the variance of phase fluctuations; l is its 
correlation scale; angular brackets denote averaging 
over an ensemble. The model (1) uniquely determines 
the radius of the spatial coherence ρc of the field 
generated by the source.4 Below the factor A is 
omitted. 
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The field of the irradiating beam at a distance z 
in the parabolic approximation is determined by the 
integral5: 
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where Sab is the surface of the circular exit aperture; 
z  is the longitudinal coordinate; R  is the 
transversal radius vector in the plane perpendicular 
to the direction of propagation. 

The presence of phase fluctuations in the initial 
field affects the mean value of the received power 
through the mean intensity of the irradiating beam. 
According to Eqs. (1) and (2), the mean intensity of 
the field at the scattering layer can be written in the 
form  
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is the structure function of phase of the initial  field. 
 Under the condition rs < λ, the intensity of 
pulsed radiation, backscattered at an atmospheric 
layer and received in the focal plane of the lens  
z = – f, according to Refs. 2 and 3, can be 
represented in the form  
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is the scattering amplitude, and the function  
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can be treated as an intensity of the collimated beam 
with the effective radius equal to the radius of the 
receiving lens, which propagates from the transceiver 
plane in the direction of the scattering layer at an 
angle  ρ0/f;  Sa0

 is  the  surface of the receiving lens. 

 The mean power of the received radiation is the 
integral of the intensity (5) over the photodetector 
area Sd: 
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Below we omit the variable f in Eq. (7) for Ps(f) 
assuming that the photodetector always lies in the 
focal plane. 

2. Mean power of scattered radiation 

The integrals (3) and (6) have finite domains of 
integration Sab and Sa0

, and it is more convenient to 

calculate them by the numerical Fast Fourier 
Transform procedure, using the fact that the 
integral (5) is a convolution integral of the functions 
(3) and (6) [Ref. 2]. 

We can write the mean intensity (5) and the 
mean received power (7) of the radiation scattered at 
the layer as: 

( ) ( ) ( )0 0 02 2
, d , , , exp 2 ,s

s i r

z
I f z z i

ff

+∞

−∞

⎛ ⎞σ
= Φ Φ π⎜ ⎟
λ ⎝ ⎠∫ s s sρ ρ ρs (8) 

 ( ) ( ) ( )0 0 02 2

( )

d d , , , exp 2 ,

d

s
s i r

S z

P z z i
z

+∞

′ −∞

σ
= Φ Φ π
λ ∫ ∫r s s r srs  (9) 

where Φi(s, z) and Φr(s, r0, z) are the spectra of the 
intensities (3) and (6); 
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is the geometric projection of the photodetector to 
the scattering layer. 

The algorithm for calculation of the spectra of 
the intensities (3) and (6) is considered for the 
intensity of the irradiating beam (3), taken as an 
example, since for the intensity of the “secondary” 
beam (6) the spectrum is calculated similarly. By 

definition,  the spectrum of the intensity  ( ),iI zR  is 
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The substitution of the Eq. (3) for ( )I ,i zR  in 

Eq. (10) gives the Dirac delta function 

( )1 2zδ λ + −s ρ ρ  for the integral with respect to the 

variable R, that is,  
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where 1 /z Fµ = − . 
The domain of integration Sab in Eq. (11) is the 

ring surface (output aperture), and the direct 
calculation of this integral at the substitution 

2 1z= λ +sρ ρ  is a rather complicated problem. 

However, if each integral over Sab in Eq. (11) is 
written as a difference of two integrals over the 
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surfaces of the circles a and b with the radii Sa  and 
Sb, that is, 
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then we can easily obtain the equation common for 
all integrals in Eq. (12). Introduce an auxiliary 
function fx (a form-factor of a circle), where x is the 
circle radius; fx(ρj) = 0, if the point of integration is 
beyond the circle surface | ρj | > x, and fx(ρj) = 1, if it 
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Using the fact that the vector of the spatial 
frequency | | | |,s s⊥ ⊥= +s e e  where ,⊥e and | |e  are unit 

vectors, can be oriented arbitrarily, we assume 

0,s⊥ =  | |s s= =s , thus removing one of the 

integration variables from the exponent. As a result, 
the integral in Eq. (13) with respect to this variable 
is calculated analytically and with respect to the 
remained variable – numerically. The substitution of 
the calculated integrals of type (13) into Eq. (12) 
allows us to calculate the integral over the ring 
surface Sab with the external and internal radii a and 
b and thus to find the spectrum Φi described by 
Eq. (11). In the case of the receiving aperture 
a = b = a0 only one term remains in place of the sum 
of integrals in Eq. (12).  

The scenario (12), (13) of spectra calculation 
was used in computation of the mean power of the 
signal scattered at the layer in the plane z by the 
equation 
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where N  is the number of nodes of the 
computational grid; Δr0 and Δs are, respectively, the 

spatial resolution and the resolution in the spatial 
frequencies. In the longitudinal direction, the 
computation by Eq. (14) was performed with a step 
sufficient for resolution of oscillations in the mean 
intensity of the irradiating beam 〈Ii〉 arising at the 
“diffraction” part of the path [0, zd], where 

2 2

d (1 )z a M
−

= − λ  is the effective diffraction length 

for the circular exit aperture.  

3. Calculated results 

The variation of 〈Ii〉 on the beam axis along the 
propagation path is shown in Fig. 1, where I0 is the 
initial intensity of the field at the circular aperture in 
the absence of fluctuations.  

 

 

Fig. 1. Mean intensity on the axis of the collimated 
irradiating beam, circular exit aperture M = 3: without 
fluctuations (1), ρñ/a = 0.6, 0.42, and 0.3 (2–4). 

 
It follows from Fig. 1 that as fluctuations 

appear in the initial field, the amplitude of 
diffraction intensity variations on the axis of the 
irradiating beam decreases. In the cross plane, the 
diffraction pattern of the intensity distribution is 
blurred at the partial spatial coherence of the field at 
the exit aperture of the source, and the ring beam 
broadens (Fig. 2). 

The intensity distribution of the backscattered 
radiation in the focal plane of the receiving telescope 
as a function of the distance to the scattering layer is 
shown in Fig. 3a. It can be seen from Fig. 3 that 
diffraction variations in the intensity of the 
irradiating beam lead to analogous variations in the 
intensity of the scattered radiation in the plane 
z = −f. As this takes place, the photodetector, 
depending on its field of view α0 = ad/f, intercepts 
only a part of the diffraction pattern in the focal 
plane, if the distance z, at which the scattering layer 
lies, is shorter than the distance z

α
0
 (Fig. 3b). 
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 a  b 

Fig. 2. Intensity distribution of the collimated irradiating beam at a distance z/zd = 0.0625: without fluctuations (a);  
ρñ/a = 0.42 (b). 

 

  
 

 a b 

Fig. 3. Intensity distribution 〈Is(ρ0, f)〉/〈Is〉max of the collimated beam backscattered radiation in the focal plane of the 
receiving objective as a function of the distance z to the scattering layer; 〈Is〉max is the maximal intensity;  the last maximum 
on the optical axis (1); diffraction length of the exit aperture zd (2); projection of the photodetector at a distance z = 0.06zd 
normalized to the spatial step of the computational grid (3); boundaries of the photodetector projection with the increasing 
distance to the scattering layer (4); the photodetector’s field of view is α0 = 5 ⋅ 10−5 rad. 

 

Figure 4 shows the calculation results for the 
mean received power of the collimated beam 
scattered radiation as a function of the distance to 
the scattering layer at the constant detector’s field of 
view and different spatial coherences of the initial 
field. 

The values of Ps(z) in Fig. 4 are normalized to 
the maximal value of the mean received power Psmax

 

in the absence of fluctuations of the initial field. It 
can be seen that the mean received power Ps = Ps(z) as 
a function of the distance to the layer first increases 
with the increase of z to some critical value and then 

decreases. As the distance to the scattering layer 
increases, the photodetector intercepts the increasing 
part of the diffraction intensity distribution in the 
focal plane (see Fig. 3b), and Ps increases. However, 
this process continues only until the extinction of the 
scattered radiation intensity begins to affect the 
received power to the greater extent than the increase 
in the intensity due to the more complete 
interception of the focal spot by the photodetector. 
The worsening of the spatial coherence leads, on the 
one hand, to blurring of the diffraction pattern and 
to the increase of the irradiated area at the 
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diffraction pattern center and, on the other hand, to 
the higher extinction of the scattered radiation 
intensity due to the additional divergence of the laser 
beam, irradiating the layer. As a consequence, the 
distance to the scattering layer, at which the mean 
received power is maximal, decreases.  

 

 
Fig. 4. Mean received power as a function of the distance to 
the scattering layer at different fluctuations of the initial 
field; collimated irradiating beam: coherent source (1); 
radius of spatial coherence ρñ = 4, 1.8, and 1.3 cm (2–4). 
 

At small fields of view, when the photodetector 
intercepts only the axial part of the diffraction 
pattern in the focal plane, the mean received power 
begins to oscillate at z variation in accordance with 
intensity variations of the received scattered radiation 
at the  photodetector center (see Fig. 3). Figure 5 
illustrates the variation of the mean received power 
as a function of the distance to the scattering layer in 
the case of small photodetector’s fields of view. 

 

 

Fig. 5. Received power of the backscattered radiation of the 
collimated beam as a function of the distance z to the 
scattering layer at the small detector’s field of view; 
α0 = 2 ⋅ 10−7 rad: coherent source (curve 1); ρñ = 4.8 cm (2); 
ρñ = 2.7 cm (3); Ps

max
 is the maximal received power for the 

coherent source. 

Figure 6 demonstrates the variation of the mean 
received power Ps as a function of the opening angle 
of the exit aperture α = a/F at various spatial 
coherences of the initial field.  

 

 

Fig. 6. Received power Ps(α) of the backscattered radiation 
as a function of the opening angle α of the exit aperture and 
the coherence radius ρc of the field at the exit aperture: 
coherent source (curve 1); ρc = 4.8 cm (2); 2.7 (3); 1.8 (4); 
1 cm (5); 5.7 mm (6); beam focus point on the scattering 
layer (7).  

 
It follows from Fig. 6 that independently of the 

field spatial coherence at the exit aperture the mean 
received power is maximal if the irradiating beam is 
focused on the layer at F = z. The influence of the 
field initial spatial coherence on the mean received 
power is also more significant in a narrow range of 
the opening angles of the transmitting aperture near 
α = a/z determined by the distance to the scattering 
layer. 

Conclusions 

It follows from the results shown in Figs. 4–6 
that the mean power of the scattered radiation 
depends on the spatial coherence of the initial field 
and changes due to the diffraction variation in the 
intensity of the irradiating beam when varying the 
distance to the scattering layer. Independently of the 
field initial coherence, the mean received power is 
maximal providing the opening angle of the 
transmitting aperture corresponds to the focusing of 
the irradiating beam on the scattering layer and, 
consequently, the laser beam energy concentration at 
the given distance is maximal. The dependence of the 
mean received power of the scattered radiation on the 
initial field spatial coherence allows the scattered 
radiation to be used to close the feedback loop when 
correcting laser beam distortions.  
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