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A concise retrospective analysis of works reflecting the history of the Monte Carlo method 
development in Siberian Branch of RAS is presented. The theoretical school founded in the middle of 
70s of the last century by Academician G.I. Marchuk mainly contributed in producing and promoting 
of new efficient methods and algorithms of statistic modeling. Many-year cooperation of physicians 
of the Institute of Atmospheric Optics and the Institute of Computation Mathematics and 
Mathematical Geophysics SB RAS allowed a solution of many problems of the atmospheric optics 
and hydrooptics, quantitative justification of potentialities of optical-location systems, and a forecast 
of a series of new physical effects. 

 

Introduction 

The appearance of the statistical simulation 
methods was historically caused by extreme 
circumstances related with the necessity of fast 
estimation of critical parameters of the first nuclear 
reactor. This problem implied numerical solution of 
integrodifferential transfer equation under 
complicated boundary conditions. The methods for 
solving the transfer equation available to that time 
(1944, the height of the World War II) were 
inconsistent. A group of excellent mathematicians, 
J. von Neiman, S. Ulam, and N. Metropolis proposed 
principally new approach in the framework of the 
closed state project “Monte Carlo,” based on the idea 
that the complicated process of multiple scattering of 
a neutron is virtually splitted into a sequence of 
independent random events admitting elementary 
probability description. The Markovian chain of 
random motion of an individual neutron stops in the 
case of its absorption or flying beyond the limits of 
an active medium. Thus, the model trajectory of the 
neutron was associated with a sequence of random 
events. Multiple numerical realization of the model 
trajectories made it possible to obtain a mean 
statistical estimate of the sought functionals with a 
known error. 

Obviously, the closeness of such numerical 
experimental results to the natural analogue is 
determined by the quality of random numbers 
representing real physical events, which form the 
process of neutron (or other particles) diffusion. 
Obtaining the sought estimates with admissible 
variance requires multiple repetition of the sequence 
of relatively simple arithmetic operations, i.e., an 
essential calculative resource. Two these problems 
predetermined the further history of development of 
the Monte Carlo method. 

The name of the method came into practice of 
mathematical physics after the appearance of the first 
open paper by Metropolis and Ulam.1 During 

following 10–15 post-war years, the Monte Carlo 
method has acquired an unusual popularity, 
especially in the field of nuclear power engineering.2–5 
Vast bibliography of early researches is presented in 
Ref. 3. However, the method was ahead of its time, 
and its effective use for solving complicated multi-
dimension problems has been retarded many years 
because of limited capabilities of the available 
calculative technique. Now there is some renaissance 
of the Monte Carlo method. The avalanche-like 
amount of papers in different fields of science and 
technique, economics, calculative mathematics, 
ecology, medical tomography, and so on is the 
evidence of this fact. 

In this paper we consider only retrospective 
analysis of the work carried out in Siberian Branch of 
Russian Academy of Sciences in the field of 
applications of the Monte Carlo method to the 
problems of atmospheric optics. 

1. Main definitions; calculation  
of brightness of the twilight aureole  

of the Earth 

The system of algorithms and programs for 
calculating the brightness field of the scattered solar 
radiation in the Earth atmosphere6–9 was developed 
under the direction of G.I. Marchuk in Computing 
Center of Siberian Branch of the Academy of 
Sciences of USSR (now Institute of Computational 
Mathematics and Mathematical Geophysics SB RAS). 
The possibility of application of the Monte Carlo 
method to the problems of atmospheric optics was 
theoretically justified. Further these investigations 
were generalized in a series of monographs [Refs. 30, 
33, 49, 51, 55, 56, 58, 65, 72, 98]. 

Specific peculiarities of the radiative interaction 
of the short-wave optical radiation with a medium 
put the requirements to the technique for statistical 
simulation. General physical statement of the 
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problem is the following.8,33,51 The process of 
radiation transfer from some source in the atmosphere 
is under consideration. Radiation sources can be both 
external (solar radiation) and internal (local or 
distributed over the volume). Optical radiation inside 
the atmosphere is absorbed, scattered or reemitted 
due to elastic and inelastic interaction with aerosol 
and gaseous components of the atmosphere and the 
underlying surface. As a result, there appears a 
transformation of spatial-angular distribution of 
radiation, as well as a change of the state of 
polarization and redistribution of the light energy 
over the frequency spectrum. In case of sources of 
non-stationary radiation of high intensity (lasers), a 
necessity appears of additional accounting of the 
whole class of non-linear optical phenomena. 

In the simplest case of stationary transfer of 
monochromatic radiation, its intensity at any point of 
the scattering medium satisfies the 3D-integro-
differential transfer equation ( , , )x y z=r r  
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where I(r, ω) is the intensity of radiation at the 
wavelength λ at the point r in the direction 
ω(a, b, c); a2 + b2 + c2 = 1; I0(r, ω) is the source 
function, G(r, ω′, ω) is the volume coefficient of the 
elastic monochromatic scattering in the direction 
ϑ = ω′ ⋅ ω; σ(r) = σa(r) + σs(r) is the extinction 
coefficient, σa, and σs are the absorption and 
scattering coefficients, respectively. 

Generally speaking, realization of the Monte 
Carlo method is not connected with solution of the 
integro-differential equation (1), however, general 
principles of enhancement of the efficiency of specific 
simulation algorithms are based on the analysis of 
this equation, preferably, in the integral form.30,33,34 
The transfer equation just in the integral form takes 
the probability character representing the ideology of 
the Monte Carlo method. Really, from the 
probability standpoint, the process of photon 
diffusion can be interpreted as the homogeneous 
Markovian chain, the successive states of which are 
the “positions” of the photon (õ0, õ1, …, õN) in the 
given phase space Õ; õN is the state just before 
emission of the photon from the medium or 
absorption. The process is completely defined 
provided that the density of initial collisions ψ(x), 
the density of transition k(õ′, x) from the point x′ to 
the point x, and the probability of absorption p(x) at 
the point x are known. These functions should satisfy 
the following conditions: 
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The density of transition for such chain has the 
form33,65: 
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where τ(r′, r) is the optical length of the fragment 
[r′, r]; g(μ) is the scattering phase function, μ = s0 ω′; 
s0 = (r – r′)/|r – r′|; Λ = σs/σ is the single scattering 
albedo. Then the integral transfer equation 
corresponding to Eq. (1) written for the density of 
collisions f(x) has the form 

 ( ) ( , ) ( )d ( ).

X

f k f′ ′ ′= + ψ∫x x x x x x   (3) 

The density of collisions f(x) is connected with the 
radiation intensity (or the flux density) I(x) by the 
relationship f(x) = σ(r)I(x). 

Equation (3) is often used  in the operator form 
 

 ,f Kf= + ψ   (4) 

where K is the integral operator with the kernel 
k(x′, x).  

According to the known principle of 
compressing images, fulfillment of the condition 

1
n

K < , where n is a natural number, is sufficient 

for the existence, uniqueness, and continuity of 
solution of Eq. (4). The operator Kn is defined by the 
formula 
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In the space L1 of the integrated functions 
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Hence, at 
1

0( ) 1 1.
L

K′Λ ≤ Λ < <r  The source of 

initial collisions in the problems of the theory of 
optical radiation transfer often has a generalized 
density, so it is expedient to consider Eq. (3) with 
the kernel (2) in the wider space N1 of the 
generalized densities of the limited variation 

measures. Obviously, for a limited medium 
1

2|| || 1LK <  

and 
1

2|| || 1,NK < are always true, even at Λ(r′) ≡ 1. All 

real scattering media are limited in space, and, hence, 
a solution of the transfer equation exists in such 
media: it is single and continuous. Thus, at 
fulfillment of the condition (6), it is rational to 
search for the integral equation (3) solution in the 
form of the finite Neuman series: 
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Different integral parameters of the transfer process 
can be represented, as a rule,33,65 in the form of linear 
functionals of the solution (7): 

 * * **
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where the function *( ) 0ϕ ≥x  is determined by the 

character of the calculated functionals. 
It directly follows from Eq. (8) that for 

estimation of the sought functionals it is necessary to 
calculate the mathematical expectation 
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However, as it was shown in practice, such 
simulation scheme called direct or analogue, is 
acceptable for solving very simple model problems, 
for example, for estimation of the integral flux of 
diffusely reflected or transmitted radiation by a layer 
of a scattering medium. So called “weight” methods 
were used even in early papers6–8 for solving more 
serious problems, where the Markovian chain was 
simulated, being more rational from the standpoint of 
the variance of the estimate, but, generally speaking, 
not reflecting the physics of the process. 
Unbiasedness of the sought estimate is reached here 
by the use of special weights Q

n: 
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Corresponding member of RAS G.A. Mikhailov 
with colleagues made the determining 
contribution9,10,13,17,18,24,30,40,43,44,55,70,82,98 in further 
development of the “weight” methods.  

First realistic estimates of the spectral 
brightness of twilight aureole of the Earth in the 
range 0.45–0.8 μm were obtained by the Monte 
Carlo method7,8,37 using the weight algorithms of the 
type (10) for boundary conditions representing the 
scheme of the real experiment on remote optical 
sensing of the atmosphere from the spaceship 
“Vostok-6.” The results of calculations are in good 
qualitative agreement with the data of field 
measurements. 

2. Solution of non-stationary problems 
of the optical radiation transfer theory 

The efficiency of the new statistic approach to 
solving the complex problems of atmospheric optics 
demonstrated in Refs. 6–8 stimulated an extension of 
the range of optical-physical applications of the 
Monte Carlo method. Researches were started at the 
Institute of Atmospheric Optics, related with 
applications of the Monte Carlo methods to solving 
the problems of the pulse laser radiation propagation 
in the atmosphere. The special class of problems 

requiring the quantitative estimates of high accuracy 
was connected with invention of promising systems 
for laser sensing of atmospheric parameters. Physical 
specificity of optical radar researches required 
essential modification of the traditional Monte Carlo 
algorithms and development of new approaches. In 
particular, following Eqs. (9) and (10), the sought 
functional *

I
ϕ
 estimates the number of collisions in 
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In actual problems, the detector phase volume in 
the space of coordinates and directions is, as a rule, 
small, therefore, rare collisions in this space cause a 
great statistical error in the analogue methods of the 
form (9). One of the effective weight methods 
enabling one to overcome the appearing difficulties is 
the method of the flux local estimation. 

Assume that for each state of the chain of 
photon wandering {xn}, one of the events can give the 

effective value ϕ(x), where *

,x D∈  before the 

character of the event is revealed. In this case the 

corresponding estimate5 of Iϕ̂ can be obtained, if the 

contribution from each collision, determined by the 
photon statistic “weight,” to multiply by the 
probability density of the required event and to 
summarize over all states of the chain, i.e., 
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It is shown10,11 that the transfer kernel for non-
stationary atmospheric optical problems takes the 
form 
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The presence of the factor 
2

*1/ −r r  leads to 

infinite variance of the estimate (12) if the detector 
is placed within the limits of the scattering medium. 
To overcome this difficulty, special techniques were 
developed11,12,24,33,49 for selection of the points 
x*(r*, ω*, t*) in the volume of the detector D*. In a 
certain class of the problems of laser sensing of 
atmospheric aerosol, the compensation of the factor 

2
*1/ −r r  is reached by instrumental correction of the 

estimated functional.26 The value of the probability 

*( )k x x→
�  is essentially determined by the range of 

variations of the angular scattering function. This 
range for coarse atmospheric hydrometeors (cumulus 
clouds, rain, hail) reaches a few orders of magnitude. 
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When estimating the temporal configurations of the 
optical signal, this leads to noticeable statistical 
fluctuations. To smooth them, many millions of 
realizations are required. 

Calculational economy is increased by 
application of another weight method – “simulation 
by value.”17,18,30,33,49,55 In the scattering regimes close 
to deep, the asymptotic solution of the Miln 
problem18,49 can be used as a value function. The 
weight estimate32,72 gives good results in the range of 
active optical thickness τ = 1.0 – 10.0. 

In statistical imitation of the laser ranging 
systems, especially in the case, when the receiver and 
transmitter are spatially remote, such states of the 
chain {xn} are possible, when none of the possible 
random {x

n} extension leads to non-zero estimate, i.e., 

*( ) 0.
n

k x x→ =
�  Under such boundary conditions it is 

expedient to extend the estimate to two forward 
collisions by selection of an intermediate point within 
the limits of angular size of the detector V*, i.e., 

using the value *( ) ( ),
n

k x x k x x′ ′→ →
� �  instead of 
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n
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� , where ( , , )x t′ ′ ′ ′= r ω  and *

.
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The idea of realization of such algorithm was 
proposed in Ref. 14, caused by a physical necessity of 
more effective taking into account intermediate 
collisions of the photons in the area of reflector of 
finite size. The applicability of the algorithm under 
different boundary conditions is justified more 
completely in the monograph.33 The transfer equation 
(4)  can be  written in the following  equivalent form: 
 

 2
.f K f K= + Ψ + Ψ   (14) 

Let Ψ be the density of fictitious collisions 
equivalent to the particle flux incident on the medium. 
Then the density of collisions KΨ corresponds to non-
scattered flux in the medium. Therefore, the double 
local estimate of the radiation intensity at the given 
point of the phase space is determined by the formula 
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The methodology of statistical simulation 
developed for the problems of pulse laser radiation 
transfer10,12,14,25 was used in solving the specific 
scientific-technical problems. In particular, the 
interrelation between the envelope shape of the 
reflected pulse and the optical-geometric conditions of 
the laser sensing was comprehensively studied first in 
Refs. 16, 20, 23, 26; the potentialities of optical 
radar systems were quantitatively justified in 
Refs. 27, 52, 76, 77. A validity of the obtained 
statistical estimates was confirmed many times by 
comparison with the data of field 
experiments.15,50,51,58,72 

3. Solution of the vector transfer 
equation 

To solve with greater accuracy the problems of 
the theory of optical radiation transfer in disperse 
media, equation (1) should be considered in 
generalized form with accounting for transformation 
of the radiation polarization parameters. Among 
numerous ways of description of the light 
polarization properties, the most convenient for 
corpuscular theory of transfer is the Stokes formalism 
proposed in 1852. The author introduced four 
parameters: I, Q, U, and V, having the dimension of 
intensity and determining the intensity, degree of 
polarization, plane of polarization, and the degree of 
radiation ellipticity. 

Note that independent use of these parameters 
essentially extends the information content of direct 
and inverse problems of radiative physics. In the 
transfer theory they are usually considered as 
components of the Stokes vector-parameter 
F(I, Q, U, V) in a four-dimension functional space. 
The non-stationary transfer equation in the vector 
form can be written as follows33,36,86: 
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where A(r) is the extinction matrix normalized to σ, 
S(ω′, ω, r) is the scattering matrix 4 × 4. 

The extinction and scattering matrices most 
completely represent microphysical characteristics of 
scattering media. This is connected with the fact that 
the number of non-zero elements in the matrices, 
their values and properties of symmetry essentially 
depend on the medium phase composition, shape and 
orientation of suspended particles, and their optical 
activity. In particular, in the absence of the latter, 
the extinction matrix is degenerated to the scalar 
extinction coefficient Ai,j = σδi,j, where δi,j is the 
Kronecker symbol; i, j = 1, 2, 3, 4. The solution of 
the stationary transfer equation taking into account 
polarization for simple models was considered by 
many authors. The full bibliography of these papers 
is presented in Ref. 65. 

For justified use of the weight modifications of 
the Monte Carlo method, it is necessary to consider 
Eq. (16) in the integral form. In the papers of 
Siberian scientists,19,33,43 the existence of such 
equation was first strictly shown, the conditions of 
its solution convergence in the form of the Neuman 
series were indicated, and some problems of finiteness 
and possibility of minimization of the vector 
algorithms were studied. Actually, if to introduce the 
vector function of the density of collisions 
f(r, ω, t) = F(r, ω, t) × σ(r) and the vector function of 
the distribution density of the source Ψ(r, ω, t), then 
the vector transfer equation (16) after known33 
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transformations gains a standard form of the 
Fredholm equation of the second type. 

The matrix of transition (x′ → x) takes here the 
form 
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where P(μ, r) is the phase matrix 4 × 4 connected 
with the scattering matrix by the relationship 
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L is the known in optics4,33,65 matrix rotation 
operator. 

Program realization of the mathematical 
formalism determined by the basis relationships (16) 
and (16a) allowed the statement and solution of the 
class of new problems of passive33,37,65 and 
active35,47,50,51 sensing of the atmosphere. In 
particular, the detailed algorithm and the results of 
solution of the non-stationary transfer equation under 
boundary conditions representing the scheme of real 
experiment on polarized lidar sensing of homogeneous 
liquid-droplet cloudiness were presented first in 
Ref. 35. Further development of this work was 
connected with the study of polarization 
characteristics of crystal clouds,47,51,92 including the 
scheme of spaceborne laser sensing.59,63,77 

4. Accounting for absorption  
by atmospheric gases 

When estimating the efficiency of atmospheric 
optical IR channels, the processes of continual and 
spectral absorption by the atmosphere molecular 
component and scattering become of importance. 
Calculation of the radiative characteristics of aerosol 
formations in the near and middle IR ranges, rich in 
absorption bands of water vapor and different gases, 
is one of the traditional and most difficult problems 
of atmospheric optics. Absorption properties of the 
medium are characterized by the transmission 
function PΔν(l), where l is the geometric path length 
of the photon, Δν is the frequency interval. The 
technique for statistical simulation was proposed in 
Refs. 21 and 22, which allows one to obtain the 
spatial-angular distribution of upward and downward 
spectral radiation fluxes in cloudy atmosphere as the 
integral with respect to photon path lengths:  
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∞
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where ( )P lΔν
�  is the effective transmission function of 

the gas mixture, which was estimated from empirical 

data on the spectral absorption by atmospheric gases, 
J(l) is the photon distribution function over the path 
lengths in the reflected and transmitted light. 

However, the use of the tables of empirical 
constants decreases operative flexibility of the Monte 
Carlo method. The modified method for taking into 
account molecular absorption (method of k-
distribution) was proposed in subsequent papers.79,80 
It was based on expansion of the effective 
transmission function into series of exponents. 
Briefly, the essence of the k-distribution method is as 
follows. Return to formal solution of integral 
equation (3). When integrating the radiation 
intensity over frequency (7), taking into account the 
formula for the integral operator (5), we can select 
the transmission function stipulated by molecular 
absorption. In this case, it is necessary to select such 
a width of the spectral interval Δν, within the limits 
of which optical characteristics of elastic scattering 
can be meant constant. Then all multipliers, which 
do not contain the molecular scattering parameters, 
can be factored outside the integral sign. The 
effective function of molecular transmission remains 
in explicit integral form: 

 
1

exp{ ( )}d ,j jP

Δν

= −τ ν ν
Δν ∫  (18) 

where τj(ν) is the optical thickness of the j-th term of 
the series (7). 

For the path fragment with constant molecular 
absorption coefficient βmol(ν), τj = βmol(ν)Lj, where 

jL  is the total path length. Exponential dependence 

of transmission on the path length makes it possible 
to pass to the space of cumulative wave numbers g 
using the Laplace transform. The transmission 
function there takes the form 

 

1

mol

0

1
exp{ ( ) }d ,j jP g L g= −β

Δν ∫  (19) 

where βmol(g) is monotonically increasing function of 
g, rather than quickly oscillating βmol(ν). Applying 
quadrature formulas to Eq. (19), it is easy to obtain 
a short (5–10 terms) series of exponents. As test 
estimates have shown, the error of the method does 
not exceed 1%. 

The generalization to the case of inhomogeneous 
paths is given in Refs. 79 and 80. 

5. Simulation of radiation transfer  
in stochastically inhomogeneous 

cloudiness 

Essential factor decreasing reliability of the 
forecasted estimates in real atmospheric optical radar 
channels is the stochastic nature of practically  
all atmospheric parameters: refractive index, 
concentration of aerosol and cloud particles, particle 
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size distribution, etc. Fluctuations of the detected 
optical signals are especially noticeable in the case of 
the stochastic inhomogeneous cloudiness. This fact 
was noted already in the first Monte Carlo 
calculations28,36,48 for quite simple statistical models. 
Analytical justification of the algorithm of statistical 
estimation of multi-point moments of the radiation 
intensity, in general, of any order, for a medium with 
continuous random inhomogeneous field of 
microphysical and, hence, optical characteristics, is 
presented in Ref. 28 in the framework of the theory 
of disturbances. Low efficiency of computers in the 
beginning of 80th, when that work was performing, 
did not allow the complete realization of the 
algorithm possibilities. The known assumption about 
Gaussian character of fluctuations of the field of 
cloud particle concentration enabled the authors36 to 
essentially simplify the weight relationships and to 
obtain reliable estimates for two first moments of the 
backscattering intensity, depending on the cloudiness 
model and observation geometry. Another approach 
connected with the use of the algorithm of optical 
splitting of the trajectories in a homogeneous 
stochastic layer was developed by B.A. Kargin 
[Refs. 48 and 49]. These laborious investigations did 
not received further development. 

The number of papers devoted to light fields in 
local-inhomogeneous stochastic cloudiness is much 
greater. Vast bibliography is presented in Ref. 71. 
Practical urgency of these investigations is obvious. 
This is related with the fact that broken cloudiness 
dominates on the planet megascale. To date, three 
approaches to simulation of the random field of 
cloudiness and radiation conventionally exist. 

The historically first model approach31 based on 
the Monte Carlo method included a countable set of 
sphere-like clouds of the finite radius r; centers 
(xj, yj, zj) = 1, 2, ..., homogeneously distributed in 
the layer zj ∈ [–H, H]; the points (xj, yj) distributed 
on the XY plane according to the Poisson law, i.e., i 
points located on the area s with the probability  

 ( ) e ( ) !s i
iP s s i

−ν

= ν , 

where 2ln(1 )p rν = − π , p is the cloud amount. The 

spheres can overlap and form a more complicated 
configuration of cloud elements close to actual. 
Optical parameters within the limits of cloud 
elements are considered as constant. 

The closed system of equations for mean 
intensity was then obtained for statistically 
homogeneous cloud fields, as well the effective 
Monte Carlo algorithms were developed.53,54,71,78,81  
A number of practically important problems were 
solved,64,71,78 for example, the efficiency of orbital 
systems for optical sensing under conditions of 
broken cloudiness was estimated.57 A generalization 
of the Poisson model to the case of multi-layer model 
of inhomogeneous broken cloudiness was presented in 
Refs. 78, 83, 84. 

In the last years, a number of serious 
investigations are devoted to development and 
application of so-called “Gaussian” models of broken 
cloudiness.69,71,73,96,97 It is assumed in this model that 
the plane z = H0 is the bottom boundary of the 
cloudiness, and the top boundary z = w(x, y) is 
described by the formula 

 ( )0 0( , ) max [ ( , ) ],0 ,w x y H v x y d= + σ −  

where 0( , ); 0; ( , )d v x y∈ −∞ + ∞ σ >  is the 

homogeneous Gaussian field with zero mean. The 
input data of the model [d, K(x, y), and 
σ0 = K(0, 0)] can be related with experimentally 
determined parameters: the cloud fraction p, the 
mean vertical and horizontal size of clouds. The 
increase of the method efficiency is connected with 
the spectrum randomization40,44,55,96 and selection of 
more realistic models of the correlation function 
K(x, y). 

The quest for taking into account extremely 
inhomogeneous configuration of actual clouds has led 
to appearance of the fractal model of cloudiness. 
Specialists of Siberian Branch of the Russian 
Academy of Sciences71,96 made essential contribution 
into its development. However, cumbersome 
algorithms of both cascade and multiplicative fractal 
versions of simulation96 do not allow the wide use of 
them. Nevertheless, as forecasting estimates obtained 
by G.A. Titov in his last paper78 show, these 
methods, undoubtedly, are promising and important, 
because they make it possible to construct clouds of 
the given fractal dimension, the estimates of which 
can be obtained based on the data of spaceborne 
optical sensing. 

6. Statistical simulation of non-linear 
and trans-spectral processes induced 
by laser radiation in the atmosphere 

Propagation of laser radiation, especially of high 
intensity, in the atmosphere as multi-component 
disperse medium is accompanied by a wide spectrum 
of non-linear and trans-spectral processes. Nonlinear 
processes lead to spatial and temporal transformation 
of the optical signal and to dynamic transformation 
of the medium optical properties due to effects of 
optical breakdown, evaporation and burning of the 
aerosol particles, etc. As a result, the Markovian 
character of the radiation transfer processes becomes 
fully broken, which is the criterion of the Monte 
Carlo method applicability. The transfer equation 
becomes nonlinear. The trans-spectral processes, first 
of all, such as Raman scattering, Mandelshtam–
Brilluin scattering, and laser induced fluorescence 
lead to redistribution of the scattered radiation 
intensity over frequency, that, from the point of view 
of the transfer theory causes the transition to multi-
rate and, in some cases, to nonlinear transfer 
equation. The invention of the technique of 
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generation of ultra-short pulses and the phenomenon 
of supercontinuum85 significantly increased the 
significance of the above processes. A subsequent 
accounting for the aforementioned optical effects, on 
the one hand, makes the algorithm of statistical 
simulation more complicated, and on the other hand, 
opens a vast field for validation of the developed 
algorithms and for statement of new problems of 
laser spectroscopy. 

First attempts of using the Monte Carlo method 
for solving the nonlinear transfer equation under 
conditions of self-induced transparency of the high-
power laser radiation channel were undertaken in 
Ref. 29. In the regime of pre-explosion evaporation of 
liquid-droplet aerosol, the particle radius r(I, t) is a 
monotonically decreasing function of the radiation 
intensity and the time of impact. This fact makes it 
possible to optimally digitize the processes in 
coordinates of time and space, and, using a 
combination of the method of discrete ordinates and 
the Monte Carlo method, to effectively solve the 
linear problem. Further this technique turned to be 
useful for numerical solution of the transfer equation, 
non-stationarity of kernel of which is caused by the 
resonance interaction of the femtosecond laser pulse 
with cloud droplets, the size of which is comparable 
with the pulse duration.99 General methodology of 
solution of nonlinear integral equations by the Monte 
Carlo method is successively developed by 
G.A. Mikhailov.55,70,82 

Trans-spectral processes in the atmosphere at 
their proper recording and interpretation essentially 
extend the laser sensing capabilities. Recording the 
spatially resolved backscattering signal at frequencies 
of vibration-rotational Raman spectrum of water 
vapor, ozone, nitrogen, and other atmospheric gases 
makes it possible to obtain the pattern of vertical 
distribution of the aforementioned components.88,94 
This information is adequate, if the signal satisfies 
the lidar sensing equation,51 i.e., is caused by single 
scattering. In the actual atmosphere, especially in the 
presence of cloudiness, there appears a necessity to 
estimate the noise, first of all, of the multiple 
scattering. 

During the last decade, the algorithms for 
statistical simulation of trans-spectral phenomena in 
the field of hydrooptics and medical tomography are 
actively developing. The first attempts to estimate 
the distortions of Raman signal in cloudy atmosphere 
by the Monte Carlo method have led to obvious 
underestimation of the multiple scattering 
contribution. Using the principles of value 
simulation32,55,72 in the selection of the Raman 
scattering angle, we succeeded88,91 in elimination of 
the aforementioned displacement and obtained the 
results comparable with estimates obtained by other 
methods. The developed algorithm88 for solving the 
multi-rate transfer equation was then successfully 
used for solving the practical problems.93,94 It was 
shown89 that extension of the algorithm to the case of 
vector form of the transfer equation does not pose 
great difficulties. 

A variety of trans-spectral transformations 
accompanying the phenomena of spontaneous and 
multi-photon fluorescence induced by laser radiation 
in biogenic and organic aerosol, opens a vast field for 
application of the Monte Carlo method for estimation 
of the fluorescent signals in complicated atmospheric 
conditions and in vegetation. These investigations in 
atmospheric optics are now at the initial stage. The 
closed system of non-stationary integro-differential 
equations regulating the transfer of wide-band 
radiation of laser-induced fluorescence in scattering 
medium is formulated, as well as the algorithm for 
its solution is proposed in Ref. 100. The obtained 
model estimates of the spatially resolved fluorescence 
spectra of plant secondary metabolites are in good 
qualitative agreement with the results of the field 
experiment.100 The system of transfer equations100 
ignores the effect of reabsorption and resonance 
energy exchange (FRET-effect). These assumptions 
require additional investigations. The peculiarities of 
formation of the two-photon and multi-photon 
fluorescence spectra induced by femtosecond 
radiation are also of interest. 

7. Solution of inverse problems 

From the very beginning, the Monte Carlo 
method application to solution of classic problems of 
radiation transfer is accompanied by attempts of 
statement and solution of inverse problems, i.e., 
attempts of reconstruction of initial optical or 
microphysical parameters. Formally, the theory of 
inverse problems in optics of disperse media is 
connected with the search for methods for inverting 
the Fredholm integral equation of the first type, for 
example, in the form38,39 

 2

s s( ) ( , ) ( )d ,

R

K r r n r rβ λ = λ π∫  (20) 

where 
s
( , )K r λ  is the scattering efficiency factor, n(r) 

is the particle size spectrum to be revealed. 
Estimation of the βs(λ) spectral values based on lidar 
or spectrophotometric measurements is always 
connected with errors, which make the problem of 
analytical inversion of Eq. (20) ill-posed. Application 
of the Monte Carlo method to solving the inverse 
problems of optical sensing is realized in the papers 
of Siberian scientists in two directions. The approach 
developed in Refs. 8, 33, 37, 56, 65 is based on 
estimation of derivatives from the measured 
functional in the framework of the theory of 
disturbances.  

For example, let a series of measured functionals 
be available: 

 1 2( , , , ) ( , ),nk kI fσ σ σ = ϕ�
…  1,2, , ,k nθ= …   

where f is the solution of the transfer equation (3); 
and it is required to find 1 2( , , , ).

n
σ σ σ…  If 

(0) (0) (0)
1 2( , , , )

n
σ σ σ…  are some forecasted values of 
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these parameters, then, applying the theory of 
disturbances, we come to the system of equations 

 (0)

1

k

n

i i k k

i

a I I

=

δσ = −∑ �  (21) 

providing the linear dependence of L on σi; here 
(0) (0) (0) (0)

1 2( , , , ).nkk
I I= σ σ σ…  If the noted dependence 

is nonlinear, the problem can be solved by the 
method of successive approximations using the 
formulas of small disturbances, then the coefficients 

ki
a  are actually the partial derivatives: 

 ,

k

k
i

i

I
a

∂
=
∂σ

 1,2, , ,k nθ= …  1,2, , .i n= …   (22) 

Calculation of derivatives by the Monte Carlo 
method is described, for example, in Refs. 33 and 65. 
 The idea of the closed numerical experiment was 
proposed and realized in Refs. 27, 38, 39, 85, 101. 
The direct problem was simulated by the Monte 
Carlo method, the problem of reconstruction of the 
initial microphysical parameters, taking into account 
the distorting effect of the multiple scattering noise, 
was solved by one of the traditional methods: the 
method of optimal parameterization38,39 or Tikhonov’s 
method of regularization.85 The genetic algorithm of 
the method of artificial neuron networks has also 
well showed itself.101 

Conclusions 

As it was mentioned above, the development of 
the Monte Carlo methods for atmospheric optics was 
based on the papers in the field of neutron physics. 
In turn, new algorithms and methods obtained in 
solving the problems of optical sensing of the 
atmosphere favored effective solving of new class of 
problems in close fields of physical optics. 
Combination of the algorithms for simulation of non-
stationary transfer of short-wave radiation with the 
results of the theory of linear systems has led to 
appearance of statistical linearly-system approach to 
imitation of the optical channels of vision in turbid 
media.41,42,67,68,72 A strict in the framework of the 
Monte Carlo method, accounting for the effect of 
multiple scattering, made it possible to reveal a 
number of basic regularities in formation of images of 
2D-objects in the “atmosphere–underlying surface” 
system. In particular, in Refs. 45 and 46, a forecast 
was proposed and geometric conditions were 
determined of extreme smoothing of the image of 
spatially limited self-radiating objects; the criteria of 
spatial resolution for aerospace vision systems were 
revealed in Refs. 63 and 72. 

The universal character of the algorithms for 
simulation of regularly inhomogeneous and stochastic 
cloud fields in the atmosphere made it possible to 
realize66 the effective algorithm for simulation of 
inhomogeneous boundary between the media in the 
“atmosphere–ocean” system and to perform a number 

of important applied investigations.74,75,90,95 The 
algorithms for local estimations are useful in solving 
some problems of atmospheric acoustics.60,61 

A limited volume of the paper does not allow us 
to present an exhaustive analysis of all data obtained 
in long-term and complementary scientific 
cooperation of physicists of the Institute of 
Atmospheric Optics and mathematicians of the 
Institute of Computational Mathematics and 
Mathematical Geophysics SB RAS. It is obvious that 
possibilities of such fruitful cooperation are not 
limited, because the capabilities of the Monte Carlo 
method are inexhaustible. 
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