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Based on the analysis of analogous linear frequency modulated (chirp) signals propagation inside the 
ionosphere HF channel, a geometrical-optics technique for data processing at the output of LFM ionosonde 
compressor is proposed, allowing reconstruction of the frequency dependence of the complex reflection 
coefficient to the initial phase under multipath conditions. Use of the above technique will allow an increase of 
information capacity of the atmosphere remote LFM sensing. 

 

Introduction 

In recent years, chirp signals are widely used for 
the remote sensing of the atmosphere,1–3 which 
allows the frequency dependence of the group-delay 
time to be determined for every propagation mode. 
The choice of chirp signals provides for a high delay-
time resolution, interference protection, and a 
reduced radiation power in LFM sensing radio 
systems.  

Besides, for an analogous chirp signal, there 
exists a linear relationship between the signal 
frequency f and radiation time t, therefore, the signal 
parameters at the output of a LFM ionosonde 
receiver at the time point t correlate with the 
reflection coefficient H(f) at the frequency f. 

The problem of determining the complex 
reflection coefficients of a single radio signal 
propagation path was solved in Ref. 4 within the 
geometrical optics method on the base of analogous 
chirp signal sensing. The reflection coefficient phase 
for every beam is determined by this method with the 
accuracy to a linear summand, which does not allow 
the total reflection coefficient of the whole multipath 
channel to be determined. 

In this work, a technique is presented for 
measuring the frequency dependence of complex 
reflection coefficients for individual beams with the 
help of chirp signals. 

The technique for determining  
the reflection coefficient  

for individual beams  

The sensing transmitter radiates the analogous 
chirp signal a1(t), which can be represented in the 
form 
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is the pulse duration. 
The instantaneous cyclic frequency ω of this 

signal linearly varies with time: ω = 2πf0 + 2 .ftπ
�  

The processing of a received chirp signal in the 
receiver by the compression method in the frequency 
range consists in its multiplication by a heterodyne 
signal, complex-conjugated to the radiated signal, 
and analysis of the resulted difference-mode signal 
spectrum. The following mathematical relations 
correspond to these operations5: 
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where * is the sign of complex conjugation; A(t) is 
the difference-mode signal; S(Ω) is its spectrum; 
aout(t)  is  the signal  at the output  from ionosphere. 
 To find the difference-mode signal spectrum, the 
approach is used, based on the representation of 
propagation medium by a transfer function. Within 
the geometrical optics method, the reflection 
coefficient of an individual beam is associated with 
the transfer function of the propagation channel 
H(ω, t) [Ref. 6]:  
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where ( , )iH tω  is the modulus of the path transfer 

function; ϕi(ω, t) is the path phase in ionosphere; m 
is the number of propagation modes. 
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The chirp element occupies a certain band 

f fTΔ =
�  near the frequency f0. Considering the 

signal as quasi-stationary for small time scales T, in 
the absence of frequency dispersion, we can expand 
the transfer function phase of an individual beam in 
the Taylor power series Δω = 2π(f – f0) and Δt = t –
 t0, restricting to linear summands, and considering 

( , )iH tω  as constant: 
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where 0 02 ;fω = π  0 0 0( , ).i i tϕ = ϕ ω  

As is known, the first phase derivative with 
respect to frequency equals to the group signal-delay 
time6: 

 0 0( ) ( ).i iω
′ϕ ω = τ ω  (5) 

The dependence ϕ(t) is related with the Doppler 
frequency shift F∂i: 
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Approximation (4) is valid when the inequalities  

 2 ;äit F

f

ΔωΔ ∂
π

∂
�  (7) 

 
∂

π Δ π
∂

�
2

2
äiF

t
t

 (8) 

hold. 
The Doppler frequency shift is directly 

proportional to the carrier signal frequency f0, 
therefore, inequality (7) can be written as follows: 

0/ .äiF t f fΔ Δ�  

For example, at Δt = 1 s, f0 = 10 MHz, and 
F∂i = 1 Hz inequality (7) holds for Δf ≈ 1 MHz, i.e., 
for the frequency band exceeding those using in HF 
communications. 

The summand with the second time derivative 
describes nonstationarity of a single-path ionospheric 
channel. For middle latitudes and undisturbed 

ionosphere 
∂

∼
∂

0.01 Hz/säiF

t
 [Ref. 5] and 

Equation (8) is valid at Δt < 7 s. 
The absence of the frequency dispersion supposes 

a chirp signal to occupy the frequency band Δf, 
which is less than the channel coherence band (i.e., 
frequency range centered at the point f0, at the edges 
of which the nonlinear phase component incursion 
due to frequency dispersion is equal in magnitude to 
1 rad [Ref. 7]). 

Hence, approximation (4) is fulfilled in the 
case, when chirp signals have Δf ≤ 100 kHz and 
duration T ≤ 1 s. When propagating in the 

ionosphere, − −

τ −∼

3 2

0 10 10 si  and 0iT τ�  [Ref. 5]. 

In this case, from Eqs. (2) and (4) we obtain 
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As is seen from the comparison of Eq. (10) with 
Eqs. (3) and (4), the difference signal of i-mode 
coincides with the value of the transfer function for 

this mode to the scaling factor 2

0 /2a π  and phase 

constant 2

0ifπ τ
� . Knowing the signal parameters a0 

and f� and measuring 0 ,iτ  we can determine the value 

of ionosphere radiochannel transfer function in the 
frequency band 
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To determine the group delay, use the difference 
signal spectrum. As is seen from Eq. (10), the 
difference signal of T duration is a leg of harmonic 
oscillation. Taking this into account, S(Ω) can be 
written in the following form: 
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where sin ( ) sin / .c x x x=  

The modulus ( )S Ω  has maxima at frequencies 
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�
�  the group 

delay of individual propagation mode is determined 

by the equation 0 0 /2 .i i fτ = Ω π
�   

Finally, for the transfer function of the 
multipath HF radiochannel with the frequency band 
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The technique for determining  
the frequency dependence  
of reflection coefficient 

Let several beams come to a receiving point with 
different delays τ0i. Each of the beams is associated 
with its own difference frequency F (Fig. 1, where 
F1 is the difference frequency of the bottom beam of 
the mode 1F2; F2 – of the mode 2F2; F3 – of the 
top beam of the mode 3F2; fi and ff are the initial 
and finite radiation frequencies; t0 and tf are the 
initial and finite radiation times).  

 

 

Fig. 1. 
 

In this case, the frequency resolution δF is 
defined by the ratio δF ≈ 1/T; from this, the delay 
resolution is5  

 / 1/ .F f fδτ ≈ δ ≈ Δ
�   (13) 

For example, if a chirp element has the 
frequency range Δf = 100 kHz, potential resolution is 
10 μs. 

Received modes in the difference signal can be 
separated with bandpass filters agreed with signals of 
corresponding modes (Fig. 2). A difference signal, 
passing through the ith frequency filter iΦ  

(1 i m≤ ≤ ), is multiplied by the complex multiplier 
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 Signal amplitude and phase at the 

adder output Aout(t) at the moment t correspond to 
the amplitude and phase of the reflection coefficient 

at the frequency = +
�

i .f f ft  

Figure 3 shows the dependence |Aout(t)| (gray) 
obtained from the simulation modeling of chirped 
signal (1) passing through a radiochannel with 

transfer function (4) at Δt = 1 s, 100f =
�

 kHz/s and 

its processing according to the scheme from Fig. 2. 
The dashed line corresponds to the dependence |H(t)|.  
 Figure 3a shows the simulation results for a two 
mode propagation channel with parameters 
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Figures 3b and c show the simulation results for 
three- and four mode channels with the parameters of 
complementary modes  
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and  
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Fig. 2. 
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Fig. 3. 

 
The envelope curve Aout(t) is evidently in good 

agreement with |H(t)|, which points to the fact that 
both the phases of individual modes and the 
amplitudes are determined correctly. 

Conclusion  

The technique is presented for processing data of 
ionosphere sensing with analogous chirp signal, which 
allows definition of frequency dependences of both  
 

delay time and complex reflection coefficient for 
individual beams. 

The use of the technique allows an enhancement 
of reliability and an increase of information capacity of 
ionosphere remote sensing with chirped signals. 

 

Acknowledgements 
 
This work was fulfilled under support of the 

Russian Foundation for Basic Research (Grant 
No. 07-01-00293). 

 
References 

 
1. V.A. Ivanov, V.I. Kurkin, V.E. Nosov, V.P. Uryadov, 
and V.V. Shumaev, Izv. Vuzov. Radiofiz. 46, No. 11, 919–
950 (2003). 
2. N.V. Il’in and I.I. Orlov, Atmos. Ocean. Opt. 10, 
No. 12, 953–957 (1997). 
3. V.I. Kurkin, V.E. Nosov, A.A. Kolchev, A.B. Egoshin, 
V.I. Batukhtin, V.A. Ivanov, N.V. Ryabova, 
V.V. Shumaev, and V.P. Uryadov, Izv. Vuzov. 
Radiofiz. 43, No. 10, 843–854 (2000). 
4. V.A. Ivanov, A.A. Kolchev, and V.V. Shumaev, in: 
Problems of Wave Diffraction and Propagation (MFTI, 
Moscow, 1995), pp. 122–131. 
5. N.D. Philipp, N.Sh. Blaunshtein, L.M. Erukhimov, 
V.A. Ivanov, and V.P. Uryadov, Up-to-date Methods for 
Studying Dynamic Processes in the Ionosphere (Shtiintsa, 
Kishinev, 1991), 287 pp. 
6. V.L. Ginzburg, Electromagnetic Wave Propagation in 
Plasma (Fizmatgiz, Moscow, 1960), 552 pp. 
7. V.A. Ivanov, A.A. Kolchev, N.V. Ryabova, and 
V.V. Shumaev, in: Problems of Wave Diffraction and 
Propagation (MFTI, Moscow, 1994), pp. 62–72. 

 


