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It is considered how the source spectrum influences the measurement accuracy of optical wave 
arrival angles, as well as the estimation accuracy of the path-averaged structure parameter of the 
refractive index fluctuations. Two reasons, which can cause the wavelength dependence of the 
variance of fluctuations of wave arrival angles, are analyzed. The first one is connected with the fact 
that phases depend on a wavelength in the approximation of smooth perturbations. The second reason 
is associated with the wavelength dependence of the refractive index and, consequently, its 
fluctuations. Strict equations are obtained to take into account the influence of the source spectrum 
on the measurement accuracy of the variance of arrival angle fluctuations and, indirectly, on the 
estimation accuracy of the path-averaged refractive index structure parameter. It can be stated that 
for most radiation sources (even nonmonochromatic) the influence of the source spectral composition 
can be neglected. 

 
Measurements of optical wave fluctuations are 

conducted already for a long time to determine the 
level of atmospheric turbulence.1 At the same time, 
an important problem concerning the influence of the 
source spectrum on the accuracy of such measurements 
remains poorly studied. This paper considers the 
influence of the source spectrum on the accuracy of 
measurements of an optical wave arrival angle and on 
the errors of estimation of the path-averaged structure 
parameter fluctuations of the refractive index Ñn

2. 
Two factors causing the dependence of the variance 
of the arrival angle fluctuations are analyzed. The 
first one is connected with the fact that, in the 
approximation of smooth perturbations, fluctuations 
of eikonal (ratio of the phase to the radiation wave 
number) depend on the wavelength. The second factor 
is attributed to the wavelength dependence of the 
refractive index and, consequently, its fluctuations. 
We consider sequentially the contributions to the 
error of the turbulence structure parameter estimation 
from optical measurements of these factors. 

 

Influence of diffraction parameters  
of optical beams 

 

Consider the plane and spherical optical waves  
as limiting cases. It can be shown that in the 

approximation of smooth perturbations the eikonal 
variations for the real parameter γ (γ = x/L 

corresponds to the spherical wave, γ = 1 corresponds 
to the plane wave) are expressed1 by the following 
equation: 
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where 
2d ( , )n ξκ  is the spectral amplitude of fluctuations 

of the refractive index n1(r), which is described by 
the equation 
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radiation wavelength. 
The wave-front tilt in the approximation of 

smooth perturbations can be calculated as1: 
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Then we can calculate the wave-front tilt ϕ as a 

ratio of the gradient of eikonal ( , ),kΘ ρ  integrated over 

the receiving aperture, to the area of this aperture 
2d ( ) :W∑ = ρ ρ∫∫  
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Here W(ρ) is the entrance pupil function of the 
detector. To simplify calculations, we apply the 
Gaussian approximation in the form  

 2 2( ) exp( / ).W dρ = −ρ  

Now we can pass on to the calculation of the jitter 
variance of the arrival angle ϕ for the spherical and 

plane waves propagating in the turbulent atmosphere. 
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In the approximation of smooth perturbations, we 

obtain 
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where the angular brackets <…> denote the averaging 
over the ensemble of realizations of a turbulent 
medium. 

To perform calculations, we apply the properties 
of the spectral expansion  
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and the Kolmogorov spectrum of turbulence  

 –11 62( , ) 0,033 ( )
n n

CΦ κ ξ = ξ κ .   (5) 

Finally, we obtain  
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Here δ(ξ1 – ξ2) is the Dirac delta function. 
Then we use the expansion into the Taylor series 

for the cosine term in the integrand of Eq. (6) 
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To calculate the integral in Eq. (6), it is necessary to 
calculate the following two integrals: 
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Summing up the two last integrals, for the variance 
of jitter we obtain 
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The analysis of Eq. (7) shows that the variance 
of the arrival angle of an optical wave depends on 
the wavelength of this wave, when calculating in the 
approximation of smooth perturbations (compared to 
the calculations in the geometric optics approximation). 
There appears the second term, giving the explicit 
wavelength dependence of the measured variance. 
This second term has the order of smallness x2/k2d4 
as compared to the first term, being the squared 
inverted wave parameter for the receiving aperture. It 
should be noted that this wavelength dependence of 
the variance of the arrival angle is true for both 
plane and spherical waves. 

Then we consider the case of a homogeneous 
path, that is, Ñn

2(ξ) = Ñ
n

2(0). In this case, Equation (7) 
for the spherical wave can be written in the form 
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where Ω = kd2/x is the wave parameter for the 
receiving aperture. 

At a first glance, we have obtained rather strong 
wavelength dependence of the variance of 
fluctuations of the spherical wave arrival angle. For 
two different wavelengths (λ1, λ2), the ratio of the 
variances is 
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It can be easily shown that if the receiving 
aperture is small in the diffraction meaning, that is, 
Ω = kd2/x < 1, then we have a strong wavelength 
dependence. If the receiver is large for a given path, 
(Ω = kd2/x >> 1), then the second term depending on 
λ can be neglected due to its smallness. 

For the initial plane wave, the variance of 
fluctuations of the arrival angle is described by the 
following equation: 
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For the homogeneous path  
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We have obtained that for the initial plane wave 
the wavelength dependence of the variance of 
fluctuations of the arrival angles is very weak. Even 
for small wave numbers of the receiving aperture, when 

Ω = kd2/x < 1, the wavelength dependence of jitter 

can be neglected. As compared to the case of the 
spherical wave, the wavelength dependence is weaker. 
  Now we can estimate the wavelength influence 
in a standard experiment. Let the initial radiation be 
closer to the divergent spherical wave, since the size 
of the emitting area à is about 7 mm, and therefore 
Ωem = kà2/x = 1. So, we use Eq. (8) and thus obtain 
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For example, at λ = 0.6 µm, belonging to the 
visible region, the path length õ = 500 m, and receiving 
aperture of 40 mm, the wave parameter for the 
receiving aperture turns out to be Ωrec = kd2/x = 32. 
Thus, in Eq. (12) the term in the square brackets is 
[…] = (1 – 0.00017), that is, nearly equal to unity. 
Thus, the wavelength dependence of the variance of 
the arrival angle (from the viewpoint of radiation 
diffraction parameters) is nearly absent, and the mean 
level of turbulence for the homogeneous path can be 
calculated by the following equation: 
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Influence of the wavelength 
dependence of the atmospheric 

refractive index 
 

When using Eq. (13), it is necessary to estimate 
the wavelength influence caused by the wavelength 
dependence of the structure parameter Ñn

2(0) = f(λ). 
Consider a nonmonochromatic radiation source 

with a wavelength band in the range (λ1, λ2). The 
task is to calculate the mean reduced value  
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where K(λ) is the spectral energy density of the 
source radiation; λ1 and  λ2 are the limiting wavelengths 
in the source spectrum. 

As a result, for the case of the source homogeneously 
emitting in the range (λ1, λ2), we obtain: 
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For a monochromatic source K(λ) = δ(λ – λ0), 
where λ0 is the radiation wavelength. 

Then in our calculations we apply the equation 
describing the wavelength dependence of the 
refractive index (and its fluctuations). It can be 
shown1 that for the wavelengths in a range from 0.2 
to 20 µm the formula: 
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can be used. 
Here Ð is the pressure, in mbar; Ò is the 

temperature, in K; λ is the wavelength, in µm; Ðw.v is 
the water vapor pressure. For long waves at a 
pressure of 1013 mbar and Ò = 288 K we obtain 
Nλ→∞ = 77.6P/T = 273. Derive the explicit 
wavelength dependence of the refractive index 
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finally, 
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As a result, the structure characteristic for an 
arbitrary wavelength in the optical wavelength range 
is determined by the equation of the form (17). The 
calculations show that Equation (14) yields the 
following equation: 
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Thus, the deviation from the monochromatic 
dependence corresponding to Eq. (14) leads to 
Eq. (19), and the maximal resulting error cannot be 
higher than 5%. 

Consider the following example. Let two 
wavelengths be given: 0.5 and 0.6 µm. If we 
calculate the term in parenthesis in Eq. (17), 
characterizing the difference from a monochromatic 
source, then we obtain for 0.5 µm 
(…) = (1 + 0.0075/0.25)2

 = 1 + 0.06, and for 0.6 µm 
we have (…) = (1 + 0.0075/0.36)2 = 1 + 0.042. Thus, 
the difference is about 1.8%. Such a difference can be 
neglected. 

 

Conclusions 

 

As a result of this study, we have derived the 
strict equations taking into account the influence of 
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the source spectrum on the error of measuring the 
variance of the arrival angle fluctuations and, 
indirectly, on the error of estimation of the path-
averaged structure parameter of the refractive index. 
We can state that for most radiation sources (even 
nonmonochromatic) the influence of the spectral 
composition can be neglected. 

The use of a wide collimated beam should be 
considered as the most efficient from the viewpoint of 
energy. The source energy is closely connected with 
the possibility to obtain an image of a separate frame 
with a rather short exposure, that is, with the 
provision of operation of a receiving device with a 

high frequency of detection of a series of optical 
beam images. 

The correct estimation of the optical turbulence 
parameters from optical measurements can be reached 
only in the case that the prevalent wind direction is 
perpendicular to the direction of optical beam 
propagation along the measurement path. 
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