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Based on the algorithm of the Monte Carlo method proposed earlier for solution of non-

stationary transfer equation for broadband radiation of laser-induced fluorescence (LIF), a series of 
calculations have been made aimed at practical purposes. As an example, we have performed 
quantitative analysis of the spatially resolved LIF spectra of 1H-Indole, one of the important 
secondary metabolites, and OPzN, a typical hazardous polycyclic aromatic hydrocarbon. We have 
estimated admissible distortions of the LIF spectra that would yet allow identification of the class of 
fluorophores to be done by the method of artificial neuron networks. 

 
 

Introduction 
 
This paper continues the discussion in Ref. 1, in 

which a statistical model of transfer of broadband 
radiation of laser-induced fluorescence (LIF) has been 
developed. Recently, the LIF phenomenon has 
determined the physical basis for the development of 
new methods of lidar sensing of vegetation and 
specific forms of organic aerosol, containing active 

fluorophores. 
Of special interest is the problem of operative 

remote diagnostics of pathogenic admixtures and 
ecotoxicants in the near-ground atmosphere. Another 
one aspect of the problem is that the fluorescence 
spectra of pathogenic admixtures have insignificant 
qualitative differences from the spectra of harmless 
organic aerosols having close chemical nature. In this 
connection, the necessity appears of constructing and 
using quite sensitive mathematical algorithms for 
recognition and identification, the most popular of 
which in different fields of geophysics has been the 
method of artificial neural networks (ANN). 

As shown in practice, the main factor limiting 
the capabilities of ANN method is the noise of active 
and passive origin, distorting the shape of signals to 
be classified. In the given case, we will concentrate 
on quantitative estimation of admissible distortions of 
the spatially resolved LIF spectra that would yet 
allow identification of the characteristic types of 
organic fluorophores to be done. In this paper, we 
restrict ourselves to the case of estimating the 
influence of active noise due to multiple scattering, 
occurring in the systems of fluorescence lidar sensing 
in a turbid atmosphere. 

1. Mathematical model  
of the radiative transfer 

 
The process of propagation of a short lidar signal 

at the wavelengths of LIF excitation will be described, 
as in Ref. 1, by nonstationary radiative transfer 
equation (RTE) through a 3D space: 
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Here I(r, Ω, t, λ) is the intensity of radiation at the 
wavelength λ at the point r(x, y, z) along the direction 

Ω, GM(λ, Ω′, Ω) is the volume coefficient of directional 
elastic light scattering, σ(λ) is the total extinction 
coefficient at the wavelength λ, that is 

 σ(λ) = α(λ) + σS(λ), 

where 
 α(λ) = αM(λ) + αF(λ), 

αM is the coefficient of absorption by the particles of 
the medium due to thermal dissipation, αF(λ) is the 
coefficient of absorption by fluorophores; 

 σS(λ) = σM(λ) + σR(λ); 

σM(λ) and σR(λ) are the coefficients of elastic and 
inelastic (Raman) scattering. 

The external source Φ0(r, t) excites fluorophores 
with absorption coefficient αF(λ) at the wavelength 
of laser radiation λ. 
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The spectral intensity IF of the subsequent 

emission of fluorescent light at the wavelength λ′  ∈  Λ 
(Λ is the region of emission spectrum) will satisfy the 
equation 
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is the function of internal LIF sources, distributed 
over the volume of the medium. Obviously,2,3 it will 
depend on the intensity of exciting radiation, quantum 
efficiency (quantum yield) of the fluorescence φ(λ′), 
and on the decay time q(τ). 

Transformation of the transfer equation, 
containing the spectral dependence of the estimated 
functionals, into the integral form has been performed, 
e.g., in Refs. 4 and 5. It is shown that it preserves its 
canonical form of the Fredholm integral equation of 
the second kind: 
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has the meaning of photon collision density. Further, 
in equation (3) 
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is the average weighted scattering phase function, 
µ = cos(ϑ), gM and gR are the scattering phase functions 

of elastic and inelastic scattering, normalized to unity, 
ϑ is the scattering angle, 

 ′ ′ ′τ λ = σ λ∫( , ; ) ( , , ) d
l

l l
0

r r r  

is the optical length of the segment l ′= −r r , c is 
speed of light; 

 0 0 0 0( ) ( ) ( ) ( ) ( )x p p p t pψ = λr Ω  

is the multiplicative density of external sources, 
p(m0) are the partial densities of the corresponding 

initial coordinates m0. It is natural that =∫ 0( )d 1.
R

p m m  

  Based on the statistical simulation, we obtain an 
estimate of the intensity of backscattering of the 
fluorescence lidar 
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in the neighborhood of the given detector D. The 
detector is defined by the set of field-of-view angles 

*
dsin d d ,i

i∆ = ϑ ϑ ϕΩ  the spatial volume * 2
d,R∆ = πr  and 

time-resolved grid ∆lk = ∆tkc. 
The solution of the system of RTE (1) and (2) is 

sought under the initial and boundary conditions, 
corresponding to the scheme of monostatic ground-
based laser radar. It is assumed that the source emits a 
δ-pulse in time within the direction cone 2π(1 – cosϕi), 
where ϕi = 0.2 mrad is the full divergence angle of the 

source. The return signal is recorded with a receiver in 
the angular cones d2 (1 cos ),iπ − ϕ  where d

iϕ  is the set 
of full acceptance angles. The traditional optical 
characteristics of the atmosphere are, as a rule, 
specified by piecewise constant functions of the height 

h. The atmosphere is divided into nh homogeneous 
layers of nonuniform height step ∆hi = ∆hi+1 – hi, 
i = 1, 2, …, nh. Each ∆hi layer is characterized by  
the assigned model values of the coefficients of 
optical interaction and scattering phase functions. A 

comprehensive description of the optical models of 
the atmosphere used can be found in Ref. 6. Specific 
features of statistical modeling of spontaneous Raman 
scattering have been described in Ref. 7. Below we 
outline the necessary aspects of the fluorescence 
spectroscopy. 

 

 2. Optical model  
of the fluorescence channel 

 
As noted above, the main principles of 

constructing calculation procedures of the Monte 
Carlo type for solution of the problems of radiative 
transfer and the particular view of the generalized 
transition density k(x′, x) can be determined from 
analysis of the integral transfer equation (3). 

In a number of cases, when complex physical 
conditions of the problem complicate derivation of 
strict analytical form of the kernel k(x′, x), it can be 
written intuitively assuming that 
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is the product of the partial probability densities 
describing random events of consecutive interaction of 
the photon with scattering, absorbing, and emitting 
media. 

The resonance and spontaneous fluorescence just 
belong to this class of phenomena. The main relations 
for the spectral intensity of the fluorescence spectrum 
are derived by many techniques8: variational method, 
on the basis of polarizability theory, with the help of 
quantum mechanics theory of perturbation, with and 
without taking account of the field quantization. All 
the methods lead to practically the same result for 
the simplest atomic system. In the frameworks of  
the traditional Kramers–Heisenberg theory,9 for the 

differential scattering cross section of linearly polarized 

radiation with angular frequency ω, incident on an 
idealized nondegenerate molecule, it follows that 
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where 0 ,  ,i  and f  are the initial, intermediate, 
and final quantum states, ωi 0 is the angular 
frequency of the virtual transition 0 → i, and ωi f is 
the angular frequency of the virtual transition i → f. 
The angular frequency of scattered radiation is 
ωs ≡ ω – ωf. Symbols ε  and sε  denote the unit 
vectors of the direction of polarization of the incident 
and scattered radiation, while d denotes the operator 
of dipole moment. Sum over all intermediate states 
i  includes integral over the continuum of states 

with positive energies, i.e., over the dissociation and 
ionization states. Sum over all finite states f  is 
restricted only to those states that give contributions 
at the observed frequency. 

Formula (8) for the differential cross section 
includes both elastic (Rayleigh) scattering if f  and 
0  coincide (in this case, ωf = 0), and inelastic 

scattering (Raman effect, fluorescence), which is 

determined by the remaining terms in the sum over 
finite states .f  After elastic scattering event ends, the 
molecule (or atom) returns to the ground state 0 . 
  The differential cross section of Raman scattering 
and fluorescence is determined by inelastic terms 
(i.e., ,f  non-coincident with 0 )  of the formula (8) 

provided that the frequency of incident radiation ω 

exceeds the lowest frequency of the molecular 
excitation. In the general case, the amount of the 
frequencies ωs in the scattered radiation is as large as 
the number of energy states with the frequencies ωf 
not exceeding ω: 
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In formula (9) the scalar products s fi⋅ dε  and fi⋅ dε  
represent the components of dipole moment for the 
transition f i→  in the direction of polarization of 
scattered and incident radiation ( sε  and ,ε  

respectively). Analogously, s 0i ⋅ dε  and 0i ⋅ dε  are 
components of the dipole moment for the transition 
0 i→  in directions sε  and .ε  

When the frequency of incident radiation falls 
within the absorption band of a fluorophore, one term, 
corresponding to the transition from a certain state 
g  to the intermediate state ,r  may become 

dominating in formula (9). In addition, if the transition 
g → r is optically allowed, the dipole moments of 
these transitions are large, and so the finiteness of 
lifetime τ of the state r  should be taken into 
consideration. In the absence of collisions, the width 
of the line of the g → r transition is determined by the 
radiative decay, allowing us to avoid the mathematical 
singularity when ω tends to the central angular 
frequency ω0 of the transition g → r. In this case 
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Total inelastic scattering cross section, integrated 
over all scattering angles and summed over all 
directions of polarization of light,9 can be represented 
in the form 
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At the macroscopic level, the matrix elements of 
the dipole moment can be expressed via Einstein 
coefficients Arf and Bgr, characterizing the probability 
of spontaneous emission for the transitions r → f and 
the probability of absorption due to the transition 
g → r. Following Ref. 9: 
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Taking into account expressions (12) and (13), 
formula (11) takes the form 
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As known,10
 the power of radiation, absorbed in 

a unity volume of a medium in the frequency interval 
(ω, ω + dω), with the neglect of induced emission is 
determined by: 
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where Ng is the number density of quantum systems 
which at the time t are in the g  state, L(ω) is the 
function describing the shape of an absorption line, 
and I(ω) is the spectral intensity of incident radiation. 
Formula (15) can be written as 

 F( ) ( ) ( ),gr gP N Iω = α ω ω  (16) 

where 
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is the absorption cross section of a molecule (or an 
atom) in the state .g  

In the absence of Doppler broadening, absorption 
line has the classical Lorentzian shape 
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The quantum efficiency φrf(ω) of the emission 

(fluorescence) due to the transition r f→  is defined 
by the formula 

 ( ) ,rf rfφ ω = τA  (19) 

i.e., the parameter φrf(ω) expresses, actually, the 
probability that the quantum system in the excited 
state r  will spontaneously emit the photon with the 
energy ωs. 

From formulas (17) and (19) we ultimately obtain 

the definition of the cross section of fluorescence as a 
two-stage process consisting of absorption of the 
photon due to the transition g r→  followed by 
remission due to the transition r f→  with the 
probability φrf(ω): 

 F F( ) ( ) ( ).σ ω = α ω φ ω  (20) 

Further, because it is assumed that, in the first 
approximation, the spontaneous fluorescence is 

isotropic, the differential scattering cross section is 
expressed as follows: 
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where QF = φ(ω)/LF(ω) is the coefficient of 
quenching of emitting molecule upon collisions with 
environment; LF(ω) is the function describing the 
shape of the fluorescence spectrum. 

As an independent parameter, the quenching 

coefficient QF can be determined from Stern–Volmer 
formula11: 
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where αs is quenching coefficient of emitting molecule 
in collisions with components denoted by subscript s; 
the parameter ps is the partial pressure of this 
component; and ΓR and ΓQ are half-widths of the 
radiative and collisional quenching, respectively. 

3. Model estimates 
 
The above formula (15) for the power of radiation, 

absorbed by the molecular system in a unit volume, 
includes the value Ng, which is the number density 
of a class of molecules capable of fluorescing within a 

chosen frequency interval (ν, ν + dν). Precisely, this 
characteristic is of interest in many physicochemical, 
medical-biological, and ecological applications (see 
Ref. 1). The laboratory fluorimeters use formula (15) 
straightforwardly. The stand-off measurements, with 
frequent requirement to consider the geometric factor 
of observations and transmission of the optical path 
in the environment, employ the fluorescence laser radar 
equation for the energy of the backscattered signal: 
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where EL is the input energy of the laser pulse; K0(λ) 

is the transmission coefficient of the receiving system 
at the wavelength λ; T(R) is the total transmission 
coefficient of the atmosphere (ocean) along the path R: 
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ξ(R) is the geometric shape factor of the lidar; À0 is 
the area of the receiving objective, τd is the response 
time of the detector. 

References 10 and 13 give detailed derivation of 
the lidar equation (23) and an overview of the known 
methods of its inversion; in addition, estimates of the 
possible influence of instrumental and passive 
atmospheric optical noise on the accuracy of solution 
of the lidar equation are described. 

In this paper, we concentrate on the influence of 
active noise, accompanying the recording of laser 
signal; that is, we analyze the noise of multiple 
scattering both at the excitation wavelength λL and 
across the spectrum of the received signal of laser-
induced fluorescence λ ∈  Λ (Λ is the spectral region 
of recording). 

The practice of such studies, performed for lidars 
employing the elastic and Raman scattering,7,12,13 
shows that under conditions of low visibility (smog, 
aerosol inversions, fog, rain, snowfall, and clouds), the 
backgrounds of active origin begin to play the key 
role in distortion of signal E(λ, R). Rigorous numerical 
solution of the problem of multiple scattering of 
broadband fluorescent radiation is performed for the 
first time in the practice of atmospheric optics studies. 
  As an examples, we considered two model 
problems. One of them concerns the estimates of  
the transformation of LIF spectrum of octakis (pyrazol-
1-yl) naphthalene (OPzN), one of the typical 
representatives of the polycyclic aromatic 

hydrocarbons (PAHs). The example has been chosen 
because these aromatic hydrocarbons constitute 
supertoxicants of the highest hazard class. At the 
same time, they are effectively excited by the third 
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harmonic of Nd:YAG laser radiation (λl = 355 nm), 
creating the physical grounds for their remote 
monitoring. The data on LIF spectra for OPzN were 
taken from Ref. 14. 

In the second problem it is necessary to estimate 
possible distortions of the fluorescence spectrum  
of 1H-Indole, one of the most important secondary 
metabolites.2 Indole actively manifests itself in 
deciduous and herbaceous plants experiencing stress 
being exposed to the action of some chemically 

aggressive substances. Moreover, Indole actively 

fluoresces when excited by the fourth harmonic of 
Nd:YAG laser radiation at λl = 266 nm. 

Numerical analysis has been performed based on 
the solution of the above system of radiative transfer 
equations (1) and (3) by the Monte Carlo method. 
The solution provides the pattern of spatiotemporal 
and spectral LIF distribution in the region of a preset 
detector. The parameters of the detector and other 
boundary conditions, determining the region of 
estimation of the sought functionals, correspond to 
those of an actual fluorescence lidar that is being 
operated at the Laboratory of Lidar Methods of IAO 
SB RAS with the only exception that the results are 
extended to include those obtained for a receiver 
with a broad field-of-view angle. All estimates have 
constructed in relative units, paving grounds to 
believe that the data for singly scattered signals 
exactly correspond to the lidar signal described by 
the laser radar equation (23). 

The really existing multiple scattering distorts 
the signal leading to biases in estimates of the 
concentration N(R) of the sought fluorophore or 
even to its misidentification. As noted earlier,1 the 
integrated quantum efficiency φ(λ) was taken to be 
constant at the level 0.03 because no exact data are 
available. Mean quenching time was set to be in the 
range 5.0–10.0 ns, which, according to numerical 
estimates, does not any marked effect on the coarse 
time grid of the signal resolution. 

Let us proceed to discussion of the calculated 
results. Figure 1 presents estimates of spatially 

resolved LIF spectra as functions of the optical density 
of the environment: à) dense atmospheric haze, 
σ(λl) = 0.005 m–1; and b) fog, σ(λl) = 0.025 m–1. 

The optical parameters of the medium, including 
the scattering phase function gM(µ, λ) for the model 
of a polydisperse liquid droplet aerosol were taken 
from Ref. 6; values of σ(λl) have been calculated for 
the excitation wavelength λl = 325 nm (in accordance 
with Ref. 14). The spectrally varying σ(λ) and 

gM(µ, λ) (not indicated in Fig. 1) were calculated in 
the course of simulation in the spectral region of 
emission Λ = 350–525 nm with the step ∆λ = 5 nm. 
  The results indicate substantial distortion of the 
initial model LIF spectrum under conditions of fog 
(Fig. 1b), both in signal magnitude and in the shape 
of the spectrum, precluding its quantitative 

interpretation and identification. However, such 

conditions of experiment are extreme and, as follows 
from estimates obtained even for quite dense 

atmospheric haze (Fig. 1à), the LIF spectrum preserves 
its specific features up to sensing depth h = 200 m. 
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Fig. 1. Transformation of the spectrum of laser-induced 
fluorescence of ÎÐzN as a function of penetration depth  
of laser signal and optical density of the medium: model 
contour (curve 1); h = 40 (curve 2); 80 (curve 3);  
120 (curve 4); 160 (curve 5); 180 (curve 6); 200 m (curve 7); 
σ = 0.005 m–1 (à); 0.025 m–1; ϕd = 1 mrad (b). 

 
The developed Monte Carlo algorithm, if 

necessary, can be used to study more extensively the 
processes of transformation of broadband radiation in 
a disperse medium. Figure 2 shows the spectral 
dependence of multiple scattering component of the 
total lidar signal, arrived from different depths of the 
medium sounded, the conditions of calculation being 
the same. 

Obviously, in the short-wave region of the LIF 
spectrum, the multiple scattering contribution Fm(λ) 
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to the total signal F(λ) increases faster, leading to 
skewness of the resulting spectrum with the increasing 
depth into the dense scattering medium (see Fig. 1b). 
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Fig. 2. Spectral dependence of multiply scattered 
component of the lidar signal arrived from different depths 
of the medium sounded: h = 40 (curve 1); 80 (curve 2);  
120 (curve 3); 160 (curve 4); 180 (curve 5); 200 m (curve 6); 
σ = 0.005 m–1 (a); σ = 0.025 m–1; ϕd = 1 mrad (b). 

 
By integrating the received signal over time, 

these difficulties can be avoided (Fig. 3); however, 
the recorded signal I(λ) will then reflect only 
properties of the leading edge of the medium 
sounded. Signal form deeper layers appears to be 
much weaker and thus it does not affect the 
integrated LIF spectrum. 

At present, spectral fluorometric studies more 
and more actively employ wide-angle means of 
recording: fibers, fast video cameras, and lidars with 
monochromators. In this regard, by the example of 
LIF spectrum of Indol, we demonstrate possible 

consequences of such recording of spatially resolved 
LIF spectra (Figs. 4–6). 
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Fig. 3. Time-integrated LIF spectrum of OPzN as a function 
of the optical density of the medium: σ = 0.005 m–1 (a); 
0.025 m–1 (b); ϕd = 1 mrad. Shown are model (curve 1) and 
reconstructed spectrum (curve 2). 

 
Figures 4 and 5 present examples of calculated 

LIF spectra of Indol, excited at the wavelength 
λl = 266 nm, as functions of the detector field-of-view 
angle and optical density of the environment: haze 
(Fig. 4) and fog (Fig. 5). 

Figure 4 presents spatially resolved LIF spectra, 
calculated for the model of a foggy haze 
(σ = 0.005 m–1), containing isotropically distributed 
fluorescence centers. Transformation of the spectra 
reflects relative growth of the intensity of short-wave 
component of the fluorescence signal (“blueing of the 
spectrum”) being a consequence of the elastic 
multiple scattering of fluorescence due to the increase 
of the detector field-of-view angle compared with its 
initial value ϕd = 0.001 rad. 
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Fig. 4. Spatially resolved LIF spectra of Indol as functions of detector field-of-view angle and depth, from which the signal is 
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0.01745 (b), and 0.0874 rad (c). 
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It should be noted that the maxima of curves, 

appearing in the short-wave part of the spectrum in 
Fig. 4c are practically totally caused by the multiple 
scattering and carry no information on the spectral 
behavior of LIF. This calls for care in estimating 
advantages of using receiving systems with wide 
field-of-view angles in lidar systems. 

Under conditions of fog (see Fig. 5), the 
possibilities of acquiring a reliable signal are even 
more limited. Distortion of the spectrum also takes 
place in the small acceptance angle (see Fig. 5à) for 
the signal arriving from deeper layers of the medium. 
Increase of the acceptance angle leads to even larger 
transformation of the spectrum compared with the  
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above-discussed case. The same conclusions as above 
also apply to the time integrated LIF signal (see 

Fig. 6). It is worthy to note the extreme distortion of 
the resulting LIF spectra shown in Fig. 6d, supporting 
the need in rigorous preliminary estimates of the 
potentialities of systems viewing in a wide angle in 
application to fluorometric analysis. 

As concerning the further application of the 
mathematical apparatus of ANN, note that all spectral 
curves in Figs. 1–6 are reduced to the form of probability 

density, i.e., they are numerically normalized to unity. 
This also makes it possible to visually estimate the 

qualitative spectrum transformation independent of 
the penetration depth of the lidar signal. 

 

4. Identification of LIF spectra under 
interference of multiple scattering 

 

Recently, the method of artificial neural networks 
(ANNs)15 has been recognized as one of the most 

efficient tools of image recognition. Possibilities of 
using the ANN method for solution of one class of 
problems in atmospheric optics have been demonstrated 
in Ref. 16. 

Neural networks are a set of interrelated elements, 
neurons, each responding to the input effects by 
producing a certain output signal. Mathematically, a 
formal neuron can be described as follows: 

 

 0
1

,
N

i i
i

y w x w
=

 
= ψ +  

 
∑  (25) 

where y is the output signal of a neuron, ψ is the 
activation function of the neuron, w are the weighting 
coefficients, N is the number of inputs, xk are the 
inputs, k = 1, 2, …, N, and w0 is the threshold 
coefficient. Figure 7 presents a structure scheme of the 
formal neuron. 

To provide the required functional ability, the 
neuron network is preliminarily trained. The training 
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procedure lies in that the network is given some 
examples, where, for each input, a certain output is 
put in correspondence. There can be two 
fundamentally different formulations of the inverse 
problem of remote laser diagnostics to be solved with 
the help of an ANN, namely the one with use of data 
of numerical simulation and the other one based on 
the database obtained directly from the experiment. 
In this case, the network is trained based on the 
“reference” results, obtained through numerical 
solution of the direct radiative transfer problem. 
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Fig. 7. Structural scheme of neuron. 

 
One of the types of the networks, designed for 

image recognition, are the networks proposed by 
Hamming and Hopfield.17,18 These networks mainly 
work with bitmaps of the images. For training of 
these networks, their inputs are supplied with some 
reference images. The difference of Hamming network 
from the Hopfield network lies in that the Hopfield 
network supplies a reference vector at its output in 
the case of successful recognition; whereas Hamming 
network indicates the reference vector number. 
Moreover, the number of outputs of the Hamming 
network equals the number of the reference vectors. 
The advantage of these network types is that they 
can recognize the input image in the case of high 
noise contamination, but at the same time these 
networks have disadvantages as well. In particular, 
the Hamming network can use only bitmap data 
presentation, while the Hopfield network has at its 
output the entire reference vector and it is necessary 
to repeatedly perform comparison with available 
reference vectors; moreover, the Hopfield network 
has low information capacity. 

For recognition of the Indol spectra, we decided 
to use three-layer neuron network of the type of 
multilayer perceptron19,20

 with a single output. One-
layer network is useless in this case because of the 
well-known limitations of these networks in 
classification problems due, in particular, to 
impossibility of separating the input images by 
hyperplanes of some functional dependences and train 
this neuron network in the case of a complex 
interrelations between input and output vectors. 
Two-layer network has less stability and requires 
more time for training: 
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where 
1

( )
1 exp( )

x
x

ψ =
+ −

 for the last two layers and 

ψ(x) = sin(x) for the first layer, wn are the 
weighting coefficients of the nth layer of the 
network, L is the number of neurons in the layer. 
  The values of the intensity over the spectrum are 
the inputs to this neural network. In the network 
there is only one output, which shows the possibility 
of recognition, this output can take real value from 0 
to 1. Simultaneously, it is assumed that the spectrum 
is recognized when the output is larger than 0.7, and 
that it cannot be recognized for smaller output value. 
The algorithm of error back propagation is used for 
training the network with a cross-check by use of a 
test sample. The algorithm minimizes the functional 
of the following form: 
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where dl, i is the desired value, which must be 
provided by the input action X, yi(W, X) is the value 
produced by the neural network, W is the matrix of 
the weighting coefficients of the neurons of the 
network, õ is the input vector, Ì is the number of 
the training examples. 

Figure 8à presents an example when the 
recognition is impossible. Nonetheless, the value 
provided by the network is quite high because the 
spectrum is close to the reference one. Training 
sample was created by deviation of the parameters 
(half-width, amplitude, and center) of the Gaussian 
functions from the reference spectrum by a small 
quantity in percent of the initial values (A1 = 0.1 ⋅ 10–2, 
h1 = 0.1 ⋅ 10–3, σ1 = 0.2 ⋅ 10–4, A2 = 0.2 ⋅ 10–2, 
h2 = 0.2 ⋅ 10–3, σ2 = 0.01 ⋅ 10–2). It was assumed that 
in the case of recognition, the network must provide 
the value 0.95: 
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where A1 and A2 are the amplitudes of the Gaussian 
functions representing the spectrum, σ1 and σ2 are the 
half-widths, h1 and h2 are the centers. 

For creation of the sample with the absence of 
recognition, we used the profiles of the spectrum 
with much larger percent deviation from the 
reference one; for these contours, the network must 
provide the value 0.05. 

In order that the network provide a concrete 
values (whether the spectrum is recognized or not), 
the network output is complimented with a neuron 
possessing the threshold activation function 

>ψ = 
≤
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( )

0.7, 0.

x
x

x
 

Figure 8b presents an example where the 
recognition is possible. 
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Fig. 8. Interface of identification of LIF spectrum: non-recognizable spectrum (a), recognizable Indol spectrum (b). 
 

 
 

Conclusion 
 

Based on theoretical studies presented, we 
proposed a new form of transfer equations or, more 
precisely, the system of equations describing the 

process of transfer of a broadband LIF in disperse 
media. In the framework of the Monte Carlo method, 
we have developed an algorithm of numerical 
solution of this system of RTE, allowing calculation 
of the spatiotemporal and spectral LIF characteristics 
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to be made under the boundary conditions mimicking 
the real experiment. We obtained numerical estimates 
demonstrating the efficiency of the proposed 
technique. The possibility of identifying the 
fluorescence spectra with the use of neural networks 
has been demonstrated. The estimates confirm the 
need of taking into account the background noise due 
to multiple scattering in case of wide field-of-view 
angles of the receiving optics. In the future, it is 
planned to incorporate the phenomena of resonance  
energy transfer in the case of spontaneous fluorescence 
in the multicomponent systems. 
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