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A model of passive impurity plume is considered in the homogeneous turbulent atmosphere 
with accounting for in-plume fluctuations of the impurity concentration. The model is based on the 
method of random forces of the turbulence theory and allows calculating the space–time correlation 
functions of the concentration field. It is shown that the in-plume concentration fluctuations are 
caused by longitudinal pulsations of the wind velocity. The plume axis fluctuations are caused by 
transversal pulsations of the wind velocity with the scales equal to typical displacement of a liquid 
particle due to the turbulent diffusion in the average wind direction. The amplitude of the plume 
axis fluctuations tends to zero at large distances from the impurity source. At small distances from 
the source, where the main contribution to the impurity concentration pulsations is made by the 
plume displacements as a whole, the considered model is close to the Gifford plume model. At large 
distances, where the in-plume concentration fluctuations are considerable, the indicated models differ 
much. In particular, the time correlation function of concentration pulsations can be negative in 
distant plume regions. The calculation results satisfactorily agree with the experiment. 

 

Introduction 
 

Solution of a number of practical problems on 
the impurity propagation in the atmosphere requires 
the knowledge of not only average concentrations but 
also statistical characteristics of their fluctuations. A 
simple and effective method of calculation of 
concentration moments of the passive impurity ejected 
by a point stationary source is the Gifford plume 
model.1 The model takes into account two independent 
processes: plume axis vibrations and jet divergence in 
the coordinate system connected with the plume axis. 
The main mechanism causing fluctuations is the 

transverse movements of the plume as a whole. A 
disadvantage of the model is the ignoring of concentration 
fluctuations in the coordinate system connected with 
the plume axis, so-called in-plume fluctuations. 

Recently, a number of works have appeared2–6 
essentially advancing the solution of the problem on 
the in-plume concentration fluctuations. In them, the 
probability density of the plume axis positions is 
postulated3

 or determined based on symmetry reasons,4 

or it is found by the method of Lagrangian statistical 
modeling2,5,6

 accounting for the full mixing condition.7 
It is taken into account in this case that only wind 
velocity fluctuations with the scales equal to transverse 
plume dimensions5,6 are responsible for the plume axis 
displacements. Further, a certain parameterization of 
the single-point concentration probability density is 
set in the coordinate system connected with the plume 
axis, which finally allows calculating single-point 

simultaneous concentration moments of different orders. 
  However, there are a number of problems, which 
require the estimation of a more general form for 
moments of the impurity concentration fluctuation. 

For example, if the measured quantity is proportional 
to the sum of concentrations in different points of the 
plume in different moments, then, in order to estimate 
this quantity variation caused by the atmospheric 
turbulence, it is necessary to know the space–time 
correlation functions of the concentration. Such situation 

takes place when lidar estimating the impurity source 
power.8 

In this paper, a random field of the passive 
impurity concentration formed by the point stationary 
source is simulated by the method of random forces 
in terms of the turbulent theory.9 The wind velocity 
field is supposed to be statistically uniform and 
stationary. Various liquid particles leaving the source 
move subjected to the statistically independent δ-time-
correlated accelerations. Nevertheless, velocities (and 
positions) of various liquid particles are partially 
correlated, if the difference in times of their escape 
from the source do not exceed the Eulerian time of 
the velocity correlation, and the source size do not 
exceed the Eulerian length of the velocity correlation. 
  This approach allows generalization of the 
Gifford plume model and taking into account of main 
features of the concentration field in the plume. 
Within the limits of the model, there naturally occur 
the in-plume concentration fluctuations. Fluctuations 
of the plume axis position are caused by transverse 
fluctuations of the wind velocity, with the scales 
equal or greater than the typical longitudinal 
displacement of a liquid particle due to the turbulent 
diffusion. The amplitude of the mass center 

fluctuations at large distances from the source tends 
to zero. Main differences between this model and the 
Gifford one manifest themselves when the role of the 
in-plume fluctuations is comparable with transverse 
displacements of the plume as a whole. 
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Basic equations 
 

For the statistical description of the gas motion 
in the turbulent flow, we use the Lagrange approach 
and, according to Ref. 9, consider that motion of a 
single liquid particle is submitted to the stochastic 
Langevin equation 

 
d

– ( ),
d

v
v f t

t
= λ +  (1) 

where v is one of the Cartesian velocity components; 
λ–1 is the Lagrange time of the velocity correlation; t 
is the time; f(t) is the component of the random 
statistically stationary δ-time-correlated force per 
unit of liquid mass 

 2( ) ( ) 2 ( )f t s f s v t+ = λδ  (2) 

(δ(t) is the Dirac delta-function). 
Let us introduce the Cartesian coordinate system 

with the x-axis along the average wind direction and 
vertical z-axis. Denote the pulsation components of 
x-, y-, z-velocity components by u, v, w, respectively. 
The distribution of liquid particles by space and 
velocities matching Eqs. (1) and (2), is described by 
the Fokker–Planck equation.10

 Let us deal with rather 
high sources, in order to consider the atmospheric 
layer, where the impurity scatters, approximately 
homogeneous. In this case, the function of liquid 
particles distribution over space and velocities at a 
fixed initial velocity is normal within time α after 
escaping the point source and determined by moments 
of coordinates and velocities of the first and the 
second orders. 

The average impurity concentration is known to 
be proportional to the probability density of the liquid 

particle coordinate.10,11
 Accounting for the above-

mentioned distribution normality of the liquid particle 
coordinates, the integral η of concentration along the 
sounding path parallel to y at the moment t at the 
point x, z at the fixed initial velocity, can be written 
in the following way: 
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Here Q(y′, z′) is the impurity flow distribution in the 
initial plume cross section (x = 0), free of the influence 

of the initial temperature and outflow velocity; U is 
the average wind velocity; u(t′, y′, z′) and w(t′, y′, z′) 

are fluctuations of x- and z-components of the wind 
velocity in the time t′ at the point 0, y′, z′; 

 1( ) 1 exp( ) ;
u u u

T
− ⎡ ⎤α = λ − −λ α⎣ ⎦  (4) 
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Parameters Tw and 
2

zΔ  are determined by analogy 

with Eqs. (4) and (5), where λu and 2
u  are substituted 

by λw and 2
,w  respectively. 

Assuming that the impurity flow distribution in 
the initial cross section can be approximated by the 
Gaussian function 
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where M is the impurity flow; Ry and Rz are the root-
mean-square dimensions of the initial cross section 
along axes y and z, being much smaller than Eulerian 
velocity correlation lengths, the expression (3) can be 
presented in the following way: 
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(u(t′) and w(t′) are the fluctuation components of the 
wind velocity at the moment t′ in the center of the 
initial cross section). Further, the integral η of the 
concentration along the sounding path will be termed 
the integral concentration. 

Let pulsation components of the wind velocity 
be characterized by the normal distribution. Then the 
integrated concentration averaged by initial velocities 
takes the form 
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Here 
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Covariance of the integrated concentrations is 
determined by the expression 
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where K12(t1, α1, t2, α2) is determined by analogy with 
Eq. (11), when replacing w by u. 

If to neglect the fluctuations of longitudinal 

velocity 2( 0),u =  in the expressions (8) and (12), 

we shall come to Gifford’s meandering plume model1: 
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where /i ix Uα =  (i = 1, 2). 

Equations (13) and (14) are valid at small 
distances from the source under the condition 

 2( / )
w

G x x U U≡ ξ Δ  << 1 (15) 

(ξ
w

–1
 is the Eulerian vertical velocity correlation time), 

which allows ignoring longitudinal fluctuations of the 
wind velocity. The condition (15) can be obtained 
from Eq. (3), taking into account that the integration 
interval in Eq. (3) over α is limited by the interval 

2( / ) .x x U UΔα ≈ Δ  If the given interval is much 

less than the Eulerian vertical velocity correlation 
time ξw

–1
, then the change in vertical velocity w(t – α) 

within the limits of integration can be ignored. It 
allows one to approximate integration of Eq. (3) over 
α and after averaging by initial velocities come to 
Eqs. (13) and (14). 

 

In-plume concentration fluctuations 
 

An instantaneous value of the mass center zc for 
the transverse concentration distribution is determined 
by the following expression: 
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After having passed to the coordinate system 
connected with the mass center z�  = z – zc(x, t), and 
substituting equations z = z�  + zc(x, t) and (16) into 
Eq. (7), we obtain the expression for the instantaneous 
concentration, being a complex functional of velocity 
fluctuations, whose strict averaging is hardly possible. 
For practical estimations, one can use the fact that 
an instantaneous value of mass center (16) is a certain 
vertical displacement of a liquid particle averaged over 
the finite time interval. Approximately, it can be 
presented as: 
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As it follows from Eqs. (17) and (18), the 
transverse fluctuations of the wind velocity are 
responsible for the mass center displacements with 
the spatial scales equal to the typical longitudinal 
displacement of a liquid particle owing to the turbulent 

diffusion 1 22( ) .xΔ  Substituting Eq. (17) into Eq. (7), 
we found that the average integral concentration and 
the covariance of the integral concentrations in the 
coordinate system connected with the plume mass 
center, are determined according to the Eqs. (8) and 
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For simplicity, the expression (20) is written only 
for x1 = x2 = x. 

The average value of the mass center of the 
transverse concentration distribution is equal to zero 
and, as follows from Eqs. (17) and (11), the dispersion 
is determined as 
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As follows from Eqs. (21), (19), (4) and (5), the 

dispersion of plume axis displacements 
2

cz  at large 

distances decreases following x
–1/2. Thus, 12L�  tends to 

L12, i.å., the resulting concentration fluctuations 

become completely in-plume. When no longitudinal 

pulsations of the wind velocity exists (at 2
0u = ), 

hence 12 1 2( , , , ) 0.L t tα α =
�

 Expressions (13) and (14) 

being valid in this case, show that the average product 
of concentrations (14) is equal to the product of the 
averages (13) and there are no in-plume fluctuations. 
   Figure 1 presents the root-mean-square amplitudes 
of relative fluctuations for the integral concentration 
in the fixed coordinate system as the distance 
function x from the impurity source for two distances 
from the average position of jet axis z = 0 and 

( / ),z L x U=  calculated in two ways: taking into 

account longitudinal pulsations of wind velocity (by 
Eqs. (8) and (10)) and ignoring them (by Eqs. (13) 
and (14)). The fluctuation amplitudes calculated by 
the models (7), (10) and (17), (18) approximately 
coincide at small distances. The fluctuation maximum 
is found approximately in the cross section, where 
the ratio of the root-mean-square displacement of the 
plume axis to its cross sectional dimension is maximal. 
Figure 1 also presents the root-mean-square fluctuation 
amplitudes in the coordinate system connected with 

mass center, at 0z =�  and ( / ).z L x U=�  It is seen 

that in-plume fluctuations, small near the source, 
become dominating at large distances. 

The fluctuation dispersion of the concentration 
integral by z in the ground jet with recording of 
horizontal meandering and separation of in-plume 
fluctuations was experimentally investigated.12 
Figure 2 presents the comparison of the full-scale 
measurement data12

 with calculation results of the 
integrated concentration fluctuations in the fixed 
coordinate system on the average jet axis and in the 
coordinate system connected with the plume mass 
center, on its instantaneous axis. 
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Fig. 1. Root-mean-square pulsation amplitude of the integral 
concentration attributed to the local average integral 
concentration depending on the distance from the source in 
fixed (solid and dashed lines) and moving coordinate systems 
connected with meandering jet axis (dot-dashed lines). Solid 
lines denote calculation by Eqs. (8) and (12), dashed lines 
denote calculation by Eqs. (13) and (14), dot-dashed lines 
denote calculation by Eqs. (8) and (12) allowing for 
Eqs. (19) and (20): on the plume axis at z = 0 (à), at a 

distance ( / )z L x U=  from the axis (b). The calculations were 

made at U = 4 m/s, 2
u  = 0.4 m/s, 2

w  = 0.3 m/s, λu

–1

 = 

= 240 s, λw

–1

 = 90 s, ξu
–1

 = 40 s, ξw
–1

 = 20 s, Rz = 1 m. 
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Fig. 2. Root-mean-square pulsation amplitude of the integral 
concentration on the jet axis attributed to the local average 
integral concentration depending on the distance from the 
source in the fixed (solid lines and dark circles) and unfixed 
coordinate system connected with meandering jet axis (dot-
dash lines and light circles). Circles denote the experiment,12 
solid lines denote the calculation by Eqs. (8) and (12), dot-
dash lines denote calculation by Eqs. (8) and (12) with 
regard for Eqs. (19) and (20). The calculations were made at 

U = 4 m/s, 2
u  = 0.4 m/s, 2

v  = 0.4 m/s, λu

–1

 = 240 s, λv

–1

 = 

= 240 s, ξu
–1

 = 40 s, ξv
–1

 = 40 s, Ry = 1 m. 
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Figure 3 presents the root-mean-square fluctuations 
of the integrated concentration averaged by the plume 
axis from 50 up to 350 m depending on the distance 
from the average plume axis normalized to the plume-
half-width. 
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Fig. 3. Root-mean-square pulsation amplitude of the integral 
concentration as a function of the distance from the jet axis 
normalized to the average jet half-width in the fixed (upper 
lines and dark circles) and unfixed coordinate systems 
connected with meandering jet axis (lower lines and light 
circles) attributed to the local (à) and axial (b) average 
concentrations. The circles denote the experiment,12 upper 
lines denote calculation by Eqs. (8) and (12), lower lines 
denote calculation by Eqs. (8) and (12) allowing for 
Eqs. (19) and (20). The calculations were made at the same 
initial data as for Fig. 2. 

 
Figure 3a presents the root-mean-square fluctuations 

attributed to the local average values of the integrated 
concentration, and Fig. 3b – to the axial average values 
of the integrated concentration. Data on meteorological 
conditions during the experiment are absent in 
Ref. 12, therefore, in calculations we used the typical 
values of input parameters.13,14

 Nevertheless, the 
calculation results on the whole satisfactorily agree 
with the experiment. Unlike Refs. 2–6, where the 
relative in-plume fluctuations are assumed independent 
of the transverse coordinates, the Ref. 12 and our 
calculations (Fig. 3a) confirm that such dependence 
exists and it is expressed rather clearly. 

 

Correlation functions 
 

For rather large distances from the initial  
plume cross section, when the inequality sign in the 

condition (15) changes to the opposite one and the 
following relations are fulfilled 
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the correlation function can be found analytically. 
Accounting for Eq. (23), expand Eq. (12) into a series 
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Functions K12, and L12, proportional to the Eulerian 
correlation functions, differ from zero only at  
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 and, following Eq. (22), act 

as delta-functions δ(t1 – α1 – t2 + α2) relative to other 
terms of the expansion. Therefore, the exact form of 
the Eulerian correlation function is not necessary for 
calculating integrals; it is enough to know the Eulerian 
correlation times. As a result, we obtain 
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where 

 1/22 ( / ).tU K x Uγ = Δ   (26) 

As it follows from Eqs. (25) and (26), the time 
scale of the integral concentration correlation is equal 
to K1/2(x/U)/U. The main contribution to the 

integrated concentration pulsations is made by the 
concentration inhomogeneities with longitudinal 
dimensions about K1/2(x/U), shifting with wind 
velocity relative to the observation point. At small 
distances from the plume axis, the integrated 
concentration pulsations of the impurity are caused 

(23)
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only by longitudinal fluctuations of the wind velocity. 

However, the role of longitudinal velocity fluctuations 
in generation of the integral concentration pulsations 
is significant at all distances from the plume axis. 
The expression (25) also shows that correlation 
function near the plume axial region can be negative. 
  In the absence of longitudinal fluctuations of 
wind velocity, the correlation function can be obtained 
through expanding Eq. (14) into a series by L12 up to 
the quadratic term inclusive: 
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Fig. 4. Time correlation functions of pulsations of the 
integrated concentration on the averaged plume axis at 

z = 0 (à, c, e) and at a distance ( / )z L x U=  from the axis (b, 

d, f) at different distances from the initial cross section: 
50 m (a, b), 500 m (c, d), 1500 m (e, f). Solid lines denote 
calculation by Eqs. (8) and (12), dot lines denote calculation 
by Eqs. (13) and (14), dot-dash lines denote calculation  
by Eq. (25). 

 
The expression (27) leads to the results much 

differing from those given by the formula (25), 
obtained with accounting for longitudinal fluctuations 

of the wind velocity. In particular, time scale of the 
correlation function (27) in the order of magnitude is 
equal to the Eulerian time scale ξw

–1
 of the wind 

velocity vertical component correlation, that, in view 
of Eq. (22), is much less than the time scale of the 
correlation function (25). 

Time correlation functions of the integrated 
concentration calculated by Eqs. (8), (12)–(14) for 
three distances from the source, are presented in Fig. 4. 
  It is seen that at a distance of 50 m, characterized 
by the criterion G = 0.03 under the chosen parameters 
and being considered small, the taking into account 
of the longitudinal pulsations weakly affects the 

results. At an intermediate distance of 500 m (G = 0.3) 
and at a distance of 1500 m, where G = 0.7, accounting 
for longitudinal pulsations essentially affects the form 

of the correlation function and increases the time 
correlation scale by several times. The negative section 
of the correlation function appears at a distance of 
500 m. 

 

Conclusion 
 
Random field of the passive impurity 

concentration formed by the point stationary source 
in the statistically inhomogeneous medium and 

stationary atmosphere was simulated by the method 
of random forces in terms of the turbulent theory. 
This allowed taking into account of the in-plume 
concentration fluctuations and generalization of the 
Gifford plume model. It is shown that the division of 
concentration fluctuations into in-plume fluctuations 
and fluctuations caused by vibrations of the plume 
mass center is possible only when accounting for the 
longitudinal wind velocities. Fluctuations of the 
plume mass center position were caused by transverse 
fluctuations of the wind velocity with the scales 
equal to the typical displacement of a liquid particle 
due to the turbulent diffusion in the average wind 
direction. The wind velocity fluctuations of smaller 
scales are responsible for in-plume concentration 
fluctuations, i.å., for the concentration fluctuations 
in the coordinate system connected with the plume 
mass center. If to neglect the longitudinal pulsations 
of the wind velocity, the diffuse displacement of a 
liquid particle in the average wind direction becomes 
zero. The in-plume concentration fluctuations disappear 
and only vibrations of the plume mass center cause 
the concentration fluctuations in the plume. In this 
case, the considered model transforms into the Gifford 
plume model. The main differences of the given model 
from the Gifford model manifest themselves, when 

the role of in-plume fluctuations becomes comparable 
with the effect of transverse displacements of the plume 
as a whole. In particular, the fluctuation characteristics 
of the integral from the concentration over the plume 
transverse cross section do not depend on transverse 
displacements of the plume as a whole. They are 
determined only by the in-plume fluctuations and 
therefore, are not described by the Gifford model. 
Significant differences in pulsation characteristics of 
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concentrations of the two models always take place 
at large distances from the source. The time scale of the 
correlation function of the integral concentration of 
the impurity at large distances are equal to the ratio 

of dimensions of longitudinal plume inhomogeneities 
to the wind velocity in the order of magnitude that can 

considerably increase the time scale following from the 

Gifford model. The concentration correlation function 
itself near the axial plume region can take the negative 
values. 
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