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Analytical relations between the integral characteristics of geometric-optics rays and 
the parameters of the three-dimensionally nonuniform atmosphere of the earth are 
derived. Modified laws of refraction of light and new methods for determining 
atmospheric corrections to the range are derived with the help of these relations. 

 
 

The geometric-optics approximation is now 
widely employed for calculating atmospheric 
corrections to optical measurements of range or 
angular dimensions. On the basis of this 
approximation the atmospheric corrections are 
determined by integrals over the trajectories of 
geometric-optic rays, to find which the ray equations 
must be solved.1 

Method for calculating the atmospheric corrections 
are discussed in Refs. 1–3. In these methods it is 
necessary to know the true spatial distribution of the 
index of refraction of air (which is not always possible in 
practice) or some approximate model profile is 
substituted for this distribution (in doing so the 
atmospheric corrections are determined with a lower 
accuracy). A new approach to this problem is proposed 
in Refs. 4 and 5. In this approach the atmospheric 
corrections are determined by methods in which there is 
no need to use the true or model atmospheric profile and 
the explicit form of the ray trajectories need not be 
sought. The approach essentially consists of the fact that 
the standard1 differential equations for the rays are 
replaced by equivalent integral relations for some 
quantities averaged along the rays. 4,5 In addition, these 
quantities are chosen so that they can be represented 
directly in terms of experimentally determined 
quantities. 

We shall use the approach of Ref. 5 to examine 
new formulations of the laws of refraction of 
geometric-optics rays in a three-dimensionally 
nonuniform atmosphere and new methods for 
determining the atmospheric corrections to the range. 

Following Ref. 5, we shall choose as the starting 
relations the first integral of the ray equation of 
geometric optics 
 

 (1) 
 

as well as the index of refraction of air averaged along 
the trajectory of a geometric-optics ray 
 

 (2) 
 

and the radius vector 

Lr  connecting the starting point 

(

r  = 0) of the ray trajectory and the final point 

(

r  = 


Lr ), 

 

 (3) 
 

Here 


( )n r  is the three-dimensionally nonuniform 
profile of the index of refraction of air;  is the ray 
coordinate measured along the trajectory of the ray 

( = 0 at 


0r ); 


 dr
l

d
 is the unit vector tangent 

to the ray; 




 
L

S d  is the length of the trajectory of 

the ray; 

LL r  is the distance between the end points 

of the ray trajectory along a straight line; the indices 
0 and L denote quantities determined at the starting 
and end points of the trajectory, respectively. 

Representing the integrals (1)–(3) in the form of 
an Euler-Maclaurin expansion6 we obtain 
 

 (4) 
 

 (5) 
 

 (6) 
 

where 
 

 (7) 
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 was introduced, and 

the terms were proportional to 


3

3 ,
d n
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

3

3 ,
d l
d

 and 

derivatives of higher order were dropped.5 
We shall study several specific examples of the 

application of the equations of geometric optics for the 
ray-averaged quantities (4)–(7). 

1. We shall derive Snell’s law of refraction for a 
plane-layered medium. Let the properties of the medium 
vary in the direction 


.n  Then    

 
L 0n n gh  and 

formula (4) can be represented in the form 
 

 (8) 
 

Multiplying Eq. (8) alternately by 

h  and 


Ll  and 

eliminating gS/2 from the equations obtained we 
arrive at the relation 
 

 
 

where 

      
 

0 0 Lcos ;L l l 


V0 0cos ( );z hl 


VLcos ( );Lz hl  

0 and L are the angles of refraction; and, zv0 and zvL 
are the visible, refraction-distorted, zenith angles. 

Since 0 + L = zvL – zv0 we have 
 

 (9) 
 

the well-known law of refraction for a plane-layered 
medium. Analysis shows that with the help of 
Eqs. (4)–(7) it is not difficult to extend the law of 
refraction to the case of a three-dimensionally 
nonuniform medium (one mathematical formulation of 
such a generalized law will be presented below when 
we examine the refraction correction to the range). 

2. We shall now modify the Laplace-Oriani 
theorem for the case of a three-dimensionalló 
nonuniform medium. For the conditions under which 

this theorem is true ( 

L

L ,
r

l
L

 nL = 1 and  


L 0n ) 

the formula (4) assumes the form 
 

 (10) 
 

Multiplying Eq. (10) alternating by 

0l  and 


0h  (


0h  

points toward the zenith at the starting point of the 
trajectory) we obtain 
 

 (11) 
 

 (12) 
 

where zt is the true zenith angle at the point of 

observation; gv0 is the projection of 


0n  on 

0;h  and, 

gh0 is the horizontal projection of 


0n  (the projection 

on the axis perpendicular to 

0h  and lying in a plane 

passing through the vectors 

0h  and 


0l ). 

Dropping further the index 0 and using the fact 
that 
 

 
 

where lat is the angle of lateral refraction, we obtain 
from Eqs. (11) and (12) 
 

 
 

 (13) 
 

Equation (13) relates the angle of refraction  
with the visible zenith angle zv, the angle of lateral 
refraction lat, the index of refraction n0, and the 
vertical and horizontal gradients of the index of 
refraction at the point of observation, and it extends 
the Laplace-Oriani theorem to the case of a 
three-dimensionally nonuniform medium. In the case 
of lateral refraction lat = 0 we obtain from Eq. (13) 
 

 (14) 
 

whence, if the condition gh  gv is satisfied, it follows 
that 
 

 (15) 
 

The first term in Eq. (15) gives the well-known2 
relation of the Laplace-Oriani theorem for a 
plane-layered medium, while the second term describes 
the change introduced by the horizontal nonuniformity 
in the refraction.2 

3. The relation between L and S in a 
three-dimensionally nonuniform medium and the 
relation for the atmospheric correction L = S – L, 
taking into account the refraction-induced curvature of 
the ray, can be derived with the help of Eqs. (4)–(7): 
 

 + 
 

 (16) 
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 (17) 
 

where n  is given by the formula (5). 
We note that the formula (17) follows from the 

relation (16), which describes the change in the 
direction of the ray as it propagates between the points 

r  = 0 and 

 
L,r r  and it is the law of refraction of a 

three-dimensionally nonuniform medium. 
To determine the correction L which the help of 

Eq. (17) there is no need to know the profile of the 
index of refraction on the measurement path and it is not 
necessary to use any a priori atmospheric models. All 
quantities appearing in Eq. (17) can be determined by 
performing measurements at the end points of the path. 

4. We shall now study the relation for the index 
of refraction of air averaged along the ray trajectory 
(5). The quantity n takes into account the fact that 
the velocity of propagation of an optical signal in the 
atmosphere differs from the velocity of light in a 
vacuum and it is the main correction accounting for 
the effect of the earth’s atmosphere on the accuracy 
of range measurements.3 Extending the formula (5) 
to the case in which the values of the index of 
refraction not only at the end points (n0, nL) but also 
at a series of intermediate points of the path (ni, 
i = 1, 2, ) are employed in the Euler—Maclaurin 
expansion, we obtain6,8 
 

 (18) 
 

where 
 

 (19) 
 

 (20) 
 

where np is the result of the point approximation of the 
mean integral index of refraction by the trapezoidal 
method; N — 1 is the number of intermediate points 
along the path at which measurements of n1 are 
performed; gv and gh are the vertical and horizontal 
components of 


;n  and, zv is the visible zenith angle. 

For N = 1 the formula (18) reduces to the case 
when all quantities are determined only at the end 
points of the path. The obtained relations, which are 
valid for an arbitrary three-dimensionally nonuniform 
atmosphere, extend the result of Refs. 9 and 10, which 
was obtained based on simplified atmospheric models. 

To study the possible accuracy of the proposed 
method for determining n  we performed à numerical 
experiment, in which real profiles n(


r ), obtained 

under natural conditions for a path 1 km long, were 
employed.11 

 
 
FIG. 1. The error made in determining the index 
of refraction of air using the formulas (18) (solid 
line) and (19) (broken line) n  =   10–6 as a 
function of the number of partitions of the region 
of integration. 

 
To perform the numerical experiment the exact 

value of n  was calculated on a computer using 
available profiles ( )n r

r
 and the formula (2); for these 

profiles n  was also determined using the formula 
(18). The difference between these two quantities 
determines the error n  made in determining the 
index of refraction using the formula (18). Figure 1 
shows the absolute magnitude of this difference (solid 
line) as a function of the number of points on the path 
at which the local measurements of the index of 
refraction are performed. The figure also shows the 
magnitude of the error made in determining n by the 
traditional trapezoidal method (broken line). One can 
see that the method under study makes it possible to 
reduce under given conditions the error in determining 
the path-averaged index of refraction of air to 
1.5  10–7 with N = 1, and for N  2 this error can be 
made to be much less than 10–7. 

The main results of this work were reported at the 
All-Union Symposium on the Propagation of Laser 
Radiation in the Atmosphere (Yakutsk, 1989). 
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