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This paper considers a restoration algorithm for the albedo of the inhomogeneous 
orthotropic underlying surface from its brightness observed from an arbitrary point 
through the atmosphere with the given optical parameters. The Newton-Kantorovich 
method, each iteration of which is computed using the Monte-Carlî and below method, 
provides the basis for this algorithm. A model problem is solved to test the algorithm. 

 
 

The problem of determining the albedo of an 
orthotropic underlying surface (US) observed through 
the atmosphere on the oasis of the known optical 
characteristics of the atmosphere and of the measured 
intensities of the upwelling radiation was studied most 
thoroughly in Refs. 1 and 2. A solution of the problem 
was sought based on the linear approximation of the 
influence of horizontal inhomogeneities in the albedo 
on the measured intensities. However, such an 
assumption is valid only for atmospheres with small 
optical thickness and US with small horizontal albedo 
variations. 

In the present paper this problem is solved using 
the Newton-Kantorovich method, in which the 
Monte-Carlo method is used at each iteration to 
calculate the intensities and their derivatives with 
respect to the albedo. This approach to the solution of 
atmospheric optics inverse problems was suggested in 
Ref. 3 and was utilized in the problems of 
reconstructing the profiles of the aerosol scattering4,9 
and absorption coefficients5 and the water vapor6,7 and 
ozone8 concentrations. 
 

STATEMENT OF THE PROBLEM 
 

A plane-layered horizontally homogeneous 
atmosphere above a nonuniform US is considered. A 
parallel flux of the monochromatic solar radiation is 
incident on the upper atmospheric boundary. The 
nonuniform US is divided into n regions S1,,Sn of the 
given shapes and sizes, The albedo values 1 
(i = 1,,n) within each region S1 are taken to be 
constant but unknown, i.e., the piecewise-constant US 
model is used.  

The following designations are used below: 
q(r, )


 is a point of the phase space Q = R   of 

the collision point coordinates r = (x, y, z)  R and 

of the directions  
 are the coefficients of the 

total (molecular plus aerosol) absorption and 
molecular plus aerosol scattering, respectively;  

 
 is the effective averaged scattering 

phase function; w and w are the directions of the 
photon paths before and after scattering; 

 
is the optical path length of the 

segment  is the direction of 
the incident solar flux. 

Suppose that a detector measuring the intensities Ik

 

of the solar radiation in the directions is 
located at an arbitrary point . 

The observation lines intersect the US at  
the points *

kr  = (xk, ók, 0). The points *
kr  are 

chosen so that at least one of them lies within each 
region S1,  Sn. Thus, N  n, where N is  
the number of chosen points, and n is the number  
of regions. For the given optical parameters of  
the atmosphere the measured magnitudes of  
the intensities are functions of the quantities 
1, , n, i.e., 
 

 (1) 
 

In this case the problem is to determine the 
quantities 1, , n from the known parameters 

*
1,I  , *

N.I  
 

SOLUTION METHOD 
 

Nonlinear system (1) is solved by the 
Newton-Kantorovich method 
 

 
 

Here j is the iteration order, o o
1 n, ...,   are 

prognostic albedo values and j
1  are the increments 

satisfying the system of equations 
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 (2) 
 

 
 

The iteration procedure stops when the following 
inequality is satisfied: 
 

 
 
where  is a small positive quantity corresponding to 
the measurement error *

kr.I  

The values of the intensity j j
1 nk ( , ..., )I    and its 

derivatives j
1k / ( 1, )I i n    are calculated by the 

Monte-Carlo method in turn for each k = 1, , N in 
the adjoint scheme. Following Ref. 9, the expression 
for Ik(1, , n) is written in the form of a series: 
 

 (3) 
 
Here q1 are the collision phase points, k(q) is the 
density function of the initial collisions corresponding 
to the method of the adjoint trajectory simulation9: 
 

 
 
K(q, q) is the density function for the transition from 
q to q (Ref. 11): 
 

 
 
(q) is the contribution from the m-th collision at the 
point qm to the statistical estimate of Ik: 
 

 
 
where F is the optical length of the path between the 
collision point qm and the upper atmospheric boundary 
along the direction to the Sun. 

To compute the derivatives Ik/i ( 1,i n ), 
series (3) is differentiated term by term: 
 

 
 

 (4) 
 

Íåãå 1
1

K K
 


 and 1
1

.
  


 

As it is seen from Eq. (4), one can use the same 
trajectories to compute the functional I and its 
derivatives Ik/i ( 1,i n ). Every successive 

collision at the point qm makes the contribution (qm) 
to the statistical estimates of the derivatives Ik/i, 
where vi(q0, q1, , qm) are the expressions in square 
brackets in Eq. (4), The function K(q, q) depends on 
I only when the collision point ri lies on the US inside 
the regions Si with the albedo i and i is a linear term 
in K(q, q). Consequently 
 

 
 
Analogously, 
 

 
 
Thus, vi(q0, q1, , qm) = p/i, where p is the 
number of collisions on the US inside the region Si on 
a segment of the trajectory q0  q1    qm. 
Finally, the derivatives Ik/i are computed for the 
regions S1, , Sn by the following algorithm. 

Let p1, , pn be the collision counters on the US 
within the regions S1, , Sn, respectively. At each 
collision within Si the counter pi is incremented by 
one. Contributions equal to pi(qm)/i are made to the 
statistical estimates in order to compute the 
derivatives Ik/i for each collision (in the 
atmosphere or on the US), where pi is the value of the 
i-th counter at the moment of the collision. 

System (2) is in general over determined (N  n) 
and is solved by the method of the least squares  
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involving a procedure of row and column scaling in 
order to decrease computer round-off errors. 
 

NUMERICAL EXAMPLE 
 

To test the proposed algorithm, we consider the 
following model problem. 

Let the origin of the coordinate system (x, y, z) 
be located at some point of the US with the axis z 
directed upwards along a normal to the US, and let 
the axis x lie in a plane of incidence of the solar rays. 
The solar zenith angle is equal to 50. A detector 
measuring the intensities *

kI  with 2% error is placed 
at the point (20 km, 0 km, 300 km). The US is 
assumed to be a rectangle (9 km12 km) surrounded 

by a background with the albedo 0. The rectangle is 
situated in the plane (x, y) so that the ends of its one 
side (9 km) are at the points (0 km, 0 km) and 
(9 km, 0 km), and those of the other side (12 km) 
are at the points (0 km, 0 km) and (0 km, 12 km). 
The rectangle is divided into twelve (3 km3 km) 
squares, the observation points are at the centers of 
each square (i.e., N = n). The desired values of i 
are listed in the left column of the Table 1. For 
convenience the model of a single-layer (50 km 
thick) atmosphere is examined. The aerosol 
scattering phase function, effectively averaged with 
the molecular scattering phase function, was taken 
from Ref. 10 (for  = 0.55 m, the Elterman 
model); m = 0.002 km–1, c = 0 km–1. 

 
TABLE 1. 

 

 
 

The calculations were carried out on a "BESM-6". 
computer by closed cycle for 4 alternative schemes: 
(a = 0.002 km–1, 0 = 0.25); (a = 0.01 km–1, 
0 = 0.25); (a = 0.002 km–1, 0 = 0.80); 
(a = 0.01 km–1, 0 = 0.80). First, for the given 
values of * *

1 n, ..., ,   0, m, a, c, and ga the 

magnitudes of * *
1 M, ..., ,I I  simulating the results of 

measurements, which were compared with * *
1 n, ...,   

with subsequent calculation of the errors  (in %). 
The magnitudes of *

a,I  rounded off to two significant 
digits, were used as the prognostic values. To 
determine i in all the schemes only one iteration was 
required when o

i  was defined in this way. The results 

of the computations are given in Table 1. As seen from 
the Table, the albedo reconstruction algorithm 
proposed here ensures satisfactory accuracy for many 
problems of the US remote sounding. 
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