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By transforming to new variables and carrying out a multipole expansion of the 
interaction Hamiltonian, we obtain expressions for the multipole moments of the 
molecule. The transition matrix elements are given. 

 
 

1. Molecular spectroscopy treats the molecule in 
terms of translational, rotational, vibrational, and 
electronic degrees of freedom. To proceed to this kind 
of description the molecular Hamiltonian must be 
reexpressed in terms of the so-called molecular 
coordinates1. In considering the interaction between 
the molecule and the electromagnetic field, it would 
seem natural to represent the interaction energy in the 
same variables, which would provide an insight into 
the field effect on the different degrees of freedom, the 
dependence of the interaction on the molecular 
structure and composition, and the contributions of 
the electron and nuclear subsystem to the interaction. 
Quite a bit of attention has been given to the 
description of the molecular coordinates (see, e.g. 
Refs. 2–8). Unlike any articles the authors are aware 
of so far, the present paper deals with a diatomic 
molecule interacting with an optical field. In so doing, 
special interest emphasis is laid on the tensor structure 
of the interaction in view of current topical problems 
pertaining, for instance, to the optical orientation of 
the molecules. 

By transforming to new variables and using a 
multipoie expansion of the interaction Hamiltonian we 
derive expressions for the multipole moments of the 
molecules and calculate the matrix elements of the 
transitions involved. 

2. Let us consider a neutral diatomic molecule 
with nuclear charges z1e and z2e (e is the absolute 
charge of the electron) and masses m1 and m2 
interacting with a quantized electromagnetic field 
described by the vector ( )A r

 
 and scalar ( )r


 

potentials in the Lorentzian gauge. The interaction 
Hamiltonian expressed in the laboratory coordinate 
system within the framework of the linear (in the 
electromagnetic field) approximation reads 
 

 (1) 
 

where j j

e
s

mc
    (sj is the spin of the j-th electron); 

H(r) is the magnetic field strength). 

We make the following substitutions of variables 
in Eq. (1): 
 

  (2) 
 

where R is the radius vector of the molecular center of 
inertia with respect to the laboratory reference frame; 
r = r1 – r2, rj are the radius vectors of electrons 
referred to from the nuclear center of mass;  is the 
equivalent mass and M is the total molecular mass. 
Note that the angular variables are not introduced in 
explicit fora here. The multipole expansion of Eq. (1) 
then gives in the dipole approximation 
 

 
 

 (3) 
 
where rp


 and j


 it are the momenta canonically 

conjugate to coordinates r and ãj, respectively; 
MN = m1 + m2. Instead of a conventional interaction 
operator Eq. (3) contains interaction terms with both 
constant and variable dipole moments. The form of the 
resulting expression explicitly shows the dependence of 
the interaction on the isotopic composition of the 
molecule. For homonuclear molecules in a fixed 
electronic state the dipole transitions, as Is well known, 
are forbidden. In this case, as can be seen from Eq. (3), 
in transitions between different electronic terms the 
field does not directly perturb the nuclear subsystem. A 
change in the nuclear motion results only from a change 
in the intramolecular Coulomb energy due to the 
electronic transitions. A similar situation also occurs for 
molecules of the CO- or NO-type where the term 
responsible for the interaction between the nuclei and 
the field is small, its difference from zero being related to 
the nuclear mass defect. Hence, for this kind of molecule 
both the interelectronic dipole transitions and those in 
the electronic ground state are induced by the influence 
of the field on the electronic subsystem. 
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The interaction energy subject to the  next-order 
multipole expansion is given by the relation 
 

 (4) 
 

where () denotes the inner product of two 
irreducible tensors of rank æ; {}æ are the 
irreducible tensors of rank æ (Ref. 9). Tensors F and 
G, respectively, are given by 
 

 
 

 
 

 (5) 
 

 
 

 (6) 
 

where P is the molecular inertia center momentum, d 
is the dipole moment operator: 
 

 (7) 
 
with 
 

 
 
The zero-rank tensors in Eqs. (5) and (6) correspond 
to the intermolecular interaction through scalar and 
longitudinal fields. The first-rank tensor (magnetic 
moment) describes the magnetic dipole transitions. 
The first term in the magnetic moment is the transition 
frequency shift due to the Doppler effect and is of the 
order of v/c. The second term determines the 
transition between different electronic terms satisfying 
the selection rule  = ±1 and is of the order of m/M. 
In contrast with the electron orbital moments, its 
selection rule is constant. The third terra renormalizes 
the electron and nuclear g-factors and be retained 
when considering the rotational transitions of the 
-terms along with the nonadiabatic contribution from 
the electron orbital momentum10. The second-rank 
tensors in Eqs. (5) and (6) determine the quadrupole 
transitions. 

According to the Wigner-Eckart theorem, the 
angular dependence in the matrix elements of the 
operators contained in the interaction Hamiltonian is 
separates to yield, here  
 

Tæ (Tæ = Fæ; Gæ). 
 

 
 

 (8) 
 

The irreducible matrix elements are given below 
using the notation adopted in the theory of diatomic 
molecules. 

1) Type-à coupling (Hund’s case (a), Ref. 11).  
 

 
 

 
 

 (9) 
 

2) Type-b coupling (Hund’s case (b), 
Ref. (11)). 

for the spin-independent operator 
 

 
 

 
 

 (10) 

 
and for the spin operator 

 

 
 

 
 

 (11) 
 

where ˆ 2 1.J J   
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