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The possibility of achieving minimum angular divergence in the far zone of partially 
coherent radiation is studied for a nonlinear medium of the Kerr type. The condition for 
obtaining maximum intensity at the receiving point is formulated and it is shown that it 
is in principle possible to achieve angular divergence less than the diffraction limit in 
focusing media. The optimal values of the initial parameters of the radiation and the 
effect of its coherent properties in minimizing the angular divergence are determined. 

The results presented make it possible to determine the range of values of the 
parameters for which, a fixed value of the angular divergence can be achieved. 

 
 

The propagation of laser radiation through 
nonlinear media is accompanied by attenuation of the 
power density. Both methods for optimizing the 
parameters of the optical system and recently 
developed adaptive control methods are employed to 
minimize the nonlinear divergence. These questions are 
review of Refs. 1 and 2. 

Programmed phase correction is most simply, but 
very efficiently, implemental for the case when the 
main nonlinear distortions of the phase of the radiation 
occur on the section of the propagation paths located 
near the radiating aperture. 

These problems were studied in Refs. 1–5 for 
coherent radiation on vertical and scanning paths. 

The angular characteristics of a beam in the far 
zone were studied in Ref. 6 for partially coherent 
radiation transmitted vertically through a thin layer of 
a nonlinear medium. The problems of minimizing the 
angular divergence in the far zone for a layer with 
nonlinearity of the Kerr type were studied in Ref. 7 in 
the aberration-free approximation. 

We shall study the pulse-frequency mode when 
 

p nl, n  T  nl, 
 

where p is pulse duration, nl is nonlinear response time 
of the medium and T is the pulse repetition period. Then, 
it may be assumed that starting with the second pulse 
the propagation occurs in the refraction channel with the 
dielectric constant distribution formed after the passage 
of the preceding pulses. In the process a given pulse 
propagates without any self-action. 

We pose the problem of determining the minimum 
angular divergence in the far diffraction zone after 
passage through a thin layer of nonlinear medium with 
thickness zs (z is the longitudinal coordinate), in 
which the radiation interacts with the medium. We 
regard the angular divergence as having reached its 

maximum value when intensity at the point of 
reception becomes maximum. In Ref. 8 it was shown 
for partially coherent radiation, whose propagation is 
described by the equation of radiation transfer, that if 
the point of reception lies in the nonlinear zone, the 
optimum phase front in the starting plane will be the 
front that would arrive from a point source placed at 
the point of reception Then, placing the source in the far 
zone we get in the plane zs a plane wave arriving from it. 
This wave having passed through the nonlinear layer, 
gives in the plane z = 0 the optimum phase front. We 
shall call this wave, which makes it possible to 
determine the optimal phase front, the reference wave 
(an example of a source of such a wave is a star). 

We will prove this assertion in the aberration-free 
approximation, and the discussions below will be 
based on this approximation. 

For nonlinearities of any type the dimensionless 
beam width g(z) in aberration-free approximation 
satisfies the equation: 
 

 (1) 
 
Here and below z is normalized to the refraction length 
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dielectric constant, whose functional form is 
determined by the type of nonlinearity  = (LR/LD), 
where LD is the diffraction length: 
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ak is the coherence, radius and a0 is the radius of the 
beam in plane z = 0. 

The solution of Eq. (1)9 with the initial 
conditions g(z = 0) = 1, g(z = 0) = 1/F  , 
where F is the focal length, can be written as 
 

 
 
where v1 and v2 are solutions of the equation 
 

 (2) 
 
with the initial conditions v1(z = 0) = 1, 

1( 0)
;

dv z
dz


   v2(z = 0) = 0; dv2(z = 0)dz = 1. 

After passing through the layer zs the beam acquires 
the angular divergence 
 

 (3) 
 
Here the index s indicate that the function is evaluated 
at z = zs. Then gs(z) has the form 
 

 
 
Due to the nonlinearity of Eq. (2) the following linear 
combination was used her for v1 
 

 (4) 
 

where v0 satisfies (2) with the initial conditions 
 

 
 

We shall find the focusing for which the angular 
divergence is minimum. For this we shall find that 
values of a for which d2/d vanishes. We solve the 
equation 
 

 where 1
1 .

dv
v

dz
 

 
 

The condition that the Wronskian for Eq. (2) 
determinant is constant implies that v1(z) = 1/v2(z). 
It is easy to show that 
 

 
 

Using these conditions we find that the minimum 
angular divergence is obtained with  = opt for which 
 

v1s = 0 (5) 
 

Then from Eq. (4) we obtain the value of opt 
corresponding to optimal focusing of the starting 
limited beam described by Eq. (1): 
 

opt = –v0s/v2s 
 
In Eq. (6), however, v1s is the derivative with respect 
to the z in the plane z = zs of the function v1 which is 
the solution of Eq. (2) with the initial conditions 
 

v1(z = 0) = 1, v1(z = 0) =  = opt. 
 

Since Eq. (2) is obtained from Eq. (1) in the limit 
  0, v1 describes the propagation of a beam with 
radius a0 . 

Thus the wave propagating from a point source in 
the far zone arrives at z = zs as an infinite plane wave 
and reaching the starting plane it has a phase front 
with the slope  = opt. Such a wave can therefore be 
used as the "reference" wave. It is interesting that opt 
is independent of  and, consequently, of the radius of 
initial beam and the coherence radius. 

Substituting Eq. (5) into Eq. (3) it is easy to 
obtain the minimum angular divergence for the 
optimal focused beam in the far zone: 
 

 (6) 
 

We note that for the case under study the angular 
divergence 2 =  corresponds to the diffraction 
divergence, i.e., the divergence of a beam propagating 
in a linear medium. As one can see from Eq. (2). for a 
defocusing nonlinear layer (2(z) > 0) v2s > 1. Then 
even with optimal focusing in the starting plane the 
divergence in the far zone is larger than the diffraction 
divergence, i.e., 2min > . On the other hand, for a 
focusing medium (2(z) < 0) v2s < 1 and therefore 
the minimum angular divergence can be less than the 
diffraction divergence, i.e., 2min < . 

It is obvious from Eq. (6) that the more coherent 
the radiation (i.e., the less ) the smaller the angular 
divergence is. 
 

TABLE 1. 
 

 
 

Table 1 gives the results of calculations of the 2 
angular divergence 2 of 2 collimated (numerator) 
and an optimally focused (denominator) beams as a 
function of the thickness of the nonlinear layer  
for different values of . The calculations  
are performed for the case f(z) = 1 for 0  z  zs 
and f(z) = 0 for z > zs. 

Analysis of these results shows that in posing 
the problem on obtaining minimum angular 
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divergence, we obtain as the thickness of the 
nonlinear layer is increased, for an optimally focused 
beam an increased gain as compared with a 
collimated beam, and this gain is all the higher the 
small the value of . However the obtained level min 
remains higher than the diffraction divergence and 
their difference increases as the thickness of the layer 
zs is increased. The increase is approximately the 
same for all the values of  and for zs = 1.5min is 5 
to 6 times greater than the diffraction divergence. 

In the case of continuous radiation with 
cor  nl  where cor is the correction time of the 
phase front at the radiation source we have the 
possibility of controlling the dielectric constant 
distribution formed up to a fixed moment in time 
with the reference wave and by the adjusting of 
mirrors to produce a phase front that is optimal at 
each moment in time. 

In the case cor p nl phase correction based on 
the use of an infinite plane (at z = zs) front as the 
reference wave will not be optimal since the change 
in the corrected focus will lag the changes in the 
distribution of dielectric constant of the medium. 

In this case the situation is similar to that 
discussed above, and, therefore the same results 
obtained and reasoning employed for the 
pulse-frequency radiation mode remain valid. 

We shall examine the possibility of obtaining 
optimal focusing, as done in Ref. 7, for the example 
of nonlinearity of the Kerr type. 

It is well known that for nonlinearity of the 
Kerr type the solution of Eq. (1) with the initial 
conditions g(z = 0) = 1 and dg(z = 0)/dz = – 
has the form 2 2 2

s s s(1 ) (1 ).g z z       The degree of 
optimal focusing can be found from the equation 
d2/d = 0. However it is difficult to obtain an 
exact analytic solution. Numerical investigations of 
 = (z, , ) showed that, for example, for 
zs = 0.2 and  = 0.01 and 0.05 the function has two 
minima; for zs = 0.5 and the same values of  there 
is only one minimum. In addition in the case of two 
minima the deeper minima corresponds to focusing 
with a longer focal length. 

Figure 1 shows the dependence of the angular 
divergence on the thickness z of the nonlinear layer 
for optimally focused (solid curve) and collimated 
(dashed curve) beams and the diffraction divergence 
limit (dotted curve). As one can see from the figure, 
if the thickness of the layer doesn’t exceed one- half 
the refraction length, optimal focusing permits 
obtaining divergence close to the diffraction limit. 
For thicknesses greater than the refraction length the 
gain for those values of  is less than 10% of the 
collimated case. Here it is also possible to find the 
thickness for which the gain for an optimally focused 
beam will be several times to fractions of a percent of 
the gain for as collimated beam, and it is thus 
possible to determine how effective focusing is for 
each specific case. 
 

 
 
FIG. 1. The angular divergence  versus the 
normalized values of the . thickness zs of the factor 
of the nonlinear layer with  = 0,001 (a) and 
 = 0.05 (b). The solid line corresponds to the 
optimally focused beam, the dashed line 
corresponds to a collimated beam, the dot-dashed 
line was calculated using the algorithm, and the 
dotted line shows the diffraction limit. 

 

 
 
FIG. 2. col/min vs  for different normalized 
values of thickness Zs of the nonlinear layer. 

 



300  Atmos. Oceanic Opt.  /April  1989/  Vol. 2,  No. 4 V.V. Kolosov and S.A. Sysoev 
 

 

The dependence of the angular divergence on  is 
shown in Fig. 2. On can see that for  of the order of 
0.05 and less and for the thicknesses of the nonlinear 
presented in the figure the gain (relative to the angular 
divergence for a collimated beam col) amount to a 
factor of two and more. It is interesting that the 
greatest gain is observed for zs of the order of one half 
the refraction length for any value of  and equals a 
factor of 30 for  = 10–1. Thus as  is increased the 
phase correction becomes less effective. 

The dot-dashed curve in Fig. 1 shows the 
numerical calculations of the angular divergence of a 
beam which passes through a nonlinear layer and 
whose phase front is corrected using the algorithm 
based on the concept of a plane reference wave and 
representing one possible variant of programmed phase 
correction. According to the algorithm a beam whose 
radius equals that of the initial beam (g = l) and 
which has a plane phase front is given in the plane 
z = zs. Next the propagation of this beam into the 
starting plane is calculated and the arriving 
distribution of the phase front in this plane is taken as 
the starting distribution for a beam transmitted into 
the far zone through the nonlinear layer. It is obvious 
that for zs  0.8 the angular divergence for an 
optimally focused beam closely matches that of a beam 
whose focusing is determined by the algorithm. For 
larger values of zs the algorithm no longer works and 
for zs  1 focusing of a beam following the algorithm 
gives a divergence that exceeds that of a collimated 
beam. As follows from the figures, however, phase 
correction is very effective precisely for those values of 
zs for which the algorithm works. 

Thus, for the case cor  nl we find that phase 
correction permits increasing substantially (by tens of 
times) the efficiency of energy transfer as compared 
with a collimated beam when the thickness of the 
nonlinear layerz zs  0.5 and   0.0005. In the  

process divergence close to the diffraction limit is 
reached. As the coherent characteristics of the beam 
are degraded (i.e., as  increases ) phase correction 
gives a smaller gain. For zs > 1 even optimal focusing 
gives a gain of several percent. It is obvious that in this 
case nonoptimal algorithms (for example, with 
programmed correction) can degrade the 
characteristics of the radiation relative to those of a 
collimated beam. 
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