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The first two elements of the light-scattering matrix for a nondispersed, homogeneous 
system of water particles with a radius of 0.5 mm and a polydispersed system of spherical 
particles (Deirmendjian’s model C.6 cloud) were calculated exactly using the formulas 
of Mie’s theory. The calculations were performed for violet, dark-blue, light-blue, green, 
yellow-green, orange, red and purple visible radiation. The spectral distributions of the 
scattering phase function in the region of the primary (scattering angles of 136-142°) and 
secondary (124-130°) rainbows are presented. 

 
 

The theory of the scattering of light by uniform 
spherical particles has been studied in detail and it is 
employed to solve many applied problems of the optics 
of the atmosphere1–3. The computational algorithms 
employed in so doing (for example, Refs. 2 and 4) 
become unstable for large particles owing to the 
accumulation of roundoff errors in the calculation of the 
amplitude functions ascending recurrence relations4. 

Stable algorithms are required7 in order to 
describe quantitatively optical phenomena, such as, 
rainbows5, glories6, aureoles, etc. , produced by large 
particles. At the present time no accurate 
computational data on the optical characteristics (OC) 
of large spherical particles have been published. For 
example, in Ref. 8 only the time required to calculate 
the elements of the scattering matrix for particles with 
  5000 ( = 2r/ = kr, where r is the radius of 
the particle,  is the wavelength of the radiation, and 
k is the wave number) is given. 

The theory of rainbows constructed in Refs. 5 and 
9 is based on computational data on the OC of 
particles with x  1500 and for a refractive index 
m = 1.33, corresponding to the single wavelength 
 = 0.550 m. In this case the spectral variations of 
the refractive index of water and of the dimensionless 
parameter x are ignored, even though it is precisely 
this dependence that determines the brilliant color 
distribution in a rainbow. Table 1 gives the values of 
the complex refractive index of water m = n–iæ and 
the parameter x for particles with radius r = 0.5 mm, 
which we employed to calculate the spectral 
brightness of a rainbow for the principal wavelengths 
of visible radiation. The radius of the particles is 
assumed to be 0.5 mm, since for smaller part idles such 
bright colors cannot be observed in both rainbows. 
 

COMPUTATIONAL PROCEDURE 
 

To calculate the complex amplitudes we employed 
both ascending4 and descending recurrence 
relations7,12; the latter relations give a stable solution 
for any particle size. The number N of terms summed4,7 
depends on the parameter x. We determined the form 

of this dependence based on numerous calculations: 
 
N = x + 5x1/3 + 2, N = mx + 300, Real(m) > 1.
 (1) 
 
The first expression is employed for x < 300, when 
the calculations are performed using the algorithm of 
Ref. 2 while the second expression is employed for 
x > 300 using the algorithm of Ref. 7. To avoid 
overflow and loss of accuracy a piecewise-discontinues 
representation of the Ricatti-Bessel functions is 
employed (the order of magnitude is dropped)4. The 
calculations were performed on an ES-1033 computer; 
the computing time for x = 5000 and 182 scattering 
angles is 35 min. 
 

 
 
FIG. 1. The two first elements of the scattering 
matrix in the region of the primary rainbow: 
parallel (1, 3) and perpendicular (2) components 
(for x = 1500, m = 1.33). The smooth curves 1 and 
2 were obtained by an approximate method based on 
Huygens principle9; the oscillating curves 1 and 2 
our data, calculated exact formulas from Mie’s 
theory; curves 3 and 4 are the data of Ref. 5, 
obtained based on the exact formulas of Mie’s 
theory (3) and by an approximate method from the 
theory of complex angular moments. 
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RESULTS 
 

The results for the first two matrix elements in 
the region of the primary rainbow for x = 1500 and 
m = 1.33 are compared in Fig. 1. The approximate 
method based on Huygens principle obviously 
describes well the behavior of both matrix elements. 
This method, presented in Ref. 9, is unfortunately 
applicable only in the region of the primary rainbow 
and does not describe the finer interference effects 
responsible for the appearance of the color (usually 
pink and green) bands (additional arcs) on the inner 
side of the primary rainbow. The data for the exact 
calculation (curve 3 in Fig. 1) presented in Ref. 5 
refer to the component that does not make a 
significant contribution to the brightness of the 
rainbow. As a visual aid our data are shifted 
downwards by the amount of the attenuation factor 
Q, equal to 2.06. In spite of the lack of accurate data 
on the spectral brightness of a rainbow the angular  
distribution of the colors in a rainbow was 
determined more than 100 years ago based on 
geometric optics. 

Geometric optics explains the appearance  
of rainbows by the existence of extremal angles at 
which rays emerge from a spherical particle after  
p internal reflections10. In particular, p = 2 for  
the primary rainbow and p = 3 for the secondary 
rainbow. 

The scattering angle for these rays can be found 
based on simple geometric considerations10 
 

 (2) 
 

where the angle of "entry"  of a ray into the particle 
() and the angle of refraction  assume extremal 
values when 
 

 (3) 
 

For the primary rainbow p = 2, c = 0 and q = –1; 
for the secondary rainbow p = 3, c = 1 and q = –1. 
We note that the sign of q given in Ref. 10 is incorrect 
in both cases. 

As is obvious from (2) and (3) the position of Qp–1 
depends on the refractive index m and the parameter p. 
This is the way angular separation of different colors 
occurs (see Table 1). In addition the color sequence in 
the primary rainbow Q1 is reversed with respect to that 
in the secondary rainbow Q2. This phenomenon can also 
be explained on the basis of geometric optics10. 

Figures 2 shows the exact calculations of the 
scattering phase function ((M2 + M1)/2) in the region 
of the primary (a) and secondary (b) rainbows. All the 
fine effects observable in nature5 can be seen in these 
figures. A dark Aleksandrov band can be seen between 
the rainbows, and narrow bands (especially green and 
purple-pink) can be seen on the inner side of the primary 
rainbow and the outer side of the secondary rainbow. As 
one can see from these figures, Q1 and Q2 which make 
the maximum contribution to the scattering phase 
function, are shifted somewhat for each wavelength  
with respect to the angles Q1 and Q2; this is attributable 
to the fact that the angles Q1 and Q2 correspond to the 

extremal values of the angles for p = 2 and p = 3 (see 

Table 1). 
 

 
TABLE 1. 

 

Characteristics of water drop and the main parameters of the primary and secondary rainbows for 
r = 0.5 mm 

 

 
 

Note: The angles Q1 and Q2 correspond to the maximum degree of polarization of the scattered light based 
on the results of exact calculations for the primary and secondary rainbows;  is the attenuation factor. 
 



V.F. Terzi et al. Vol. 2,  No. 4 /April  1989/ Atmos. Oceanic Opt.  295 
 

 

 
 

FIG. 2. Scattering phase functions in the region of the primary (a) and secondary (b) rainbow for 
different wavelengths of visible radiation (the numbers on the curves correspond to the enumeration 
employed in Table 1). The scale along the ordinate axis pertains to the top curve; the other curves 
are shifted, as a visual aid, downwards by one unit of the ordinate scale. The discretization step 
equals 0.1. 

 
Table 1 also gives the degree of linear 

polarization of the scattered radiation 
 

 (4) 
 

for the angles Q1 and Q2, respectively. One can see 
that the scattered radiation in the region of the 
rainbow is strongly polarized. The value of P is 
significantly higher for Q1 and Q2. 
 

 
 

FIG. 3. Diagram of the spectral distribution of the 
scattering phase function in the region of the 
primary and secondary rainbows for a polydispersed 
system of spherical particles (model C. 6 cloud). 

 
The maxima and minima of the scattering; phase. 

function beyond the primary peak of the rainbows are 
associated with the interference of rays undergoing the 
same number of internal reflections but entering the 
particle at different angles10, so that their position 
depends strongly on the size of the particle. For a 
polydispersed system of particles these extrema  

are superposed and vanish (Fig. 3). The scattering 
phase functions presented in Fig. 3 for different 
wavelengths were calculated for a cloud model in 
which the particle size distribution is described by a 
-function (model C. 6 cloud) 
 

 (5) 
 

The data in Fig. 3 refer to the matrix element M2, 
which is the dominant element in the region of the 
rainbow (see Fig. 1). 

Geometric optics describes well the distribution of 
the spectral brightness of rainbows shown in Figs. 1–3, 
but a quantitative description is possible only on the 
basis of Mie’s theory. The latter theory actually leads to 
the multiplication of tens of thousands of complex 
functions, and this makes it difficult to give a physical 
explanation of the data so obtained. 

Rainbows and glories are characteristic phenomena 
associated with the scattering of light into the back 
hemisphere by cloud particles6. In both ceases the 
intensity of the scattered light is maximum, but they can 
be distinguished according to the sing of the 
polarization: in the rainbow region the electric vector of 
the scattered radiation is oriented primarily 
perpendicularly to the scattering plane (positive 
polarization, i.e., M2 > M1); in the glory region (near 
Q = 180) the electric vector is predominantly parallel 
to the scattering plane (negative polarization, i.e., 
M2 < M1)

6. Thus the nature of the appearance of 
nonzero values of the cross-polarized component in the 
echo signal obtained in the echo signal obtained in 
polarization laser sounding of clouds11 can be determined 
after the sign of the degree of polarization (4) has been 
determined experimentally: positive polarization should 
predominate in the case of multiple scattering 
(M1 > M2) and negative polarization should 
predominate in the case of single scattering (M1 > M2). 
 



296  Atmos. Oceanic Opt.  /April  1989/  Vol. 2,  No. 4 V.F. Terzi et al. 
 

 

REFERENCES 
 
 
1. V.E. Zuev, Propagation of Visible and Infrared 
Radiation in the Atmosphere (Sovetskoye radio, 
Moscow, 1970). 
2. V.E. Zuev and G.M. Krekov, Optical Models of 
the Atmosphere (Gidrometeoizdat, Leningrad, 1986). 
3. V.E. Zuev and G.M. Kabanov, Optics of 
Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 
1987). 
4. D. Deirmendjian, Electromagnetic Scattering on 
Spherical Polydispersions, (Elsevier, New York, 1969). 
5. Kh. Nussentsveig, Usp. Fiz. Nauk, 125, No. 3, 
527 (1978). 

6. V.P. Terzi, F.S. Yakupova, A.G. Konyukhov, et 
al., Optika Atmosfery, 1, No. 8, 51 (1988). 
7. G.W. Kattawar and G.N. Plass, Appl. Opt., 6, 
No. 8, 1377 (1967). 
8. W.I. Wiscombe, Appl. Opt., 19, No. 9, 1505 
(1980). 
9. S.D. Mobbs, J. Opt. Soc. Am., 69, No. 8, 1989 
(1979). 
10. H. Van de Hulst, Light Scattering by Small 
Particles, (Wiley, New York, 1957). 
11. G.M. Krekov, S.I. Kavkyanov and M.M. Krekova, 
Interpretation of Signals of Optical Atmospheric 
Sounding Signals, (Nauka, Novosibirsk, 1987). 
12. K.S. Shifrin and I.L. Zelmanovitch, Tables of 
Light Scattering (Gidrometeoizdat, Leningrad, 1968). 


