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The information content of vertical profiles of the spectral hemispherical fluxes of 
short-wavelength radiation in the atmosphere for use in reconstructing the corresponding 
vertical profiles of the optical parameters of the medium is determined the inhomogeneous 
atmosphere is divided into layers (of the optical density, photon survival probability, and 
elongation of the scattering phase function) and the problem is solved for all parameters 
and for all layers simultaneously. The matrices of the partial derivatives of the indicated 
fluxes with respect to the atmospheric parameters of the atmosphere are studied for the 
case of clear (0 = 0.09), turbid (0 = 0.9), and highly turbid (0 = 3.5) atmospheric 
conditions. The information content of measurements is evaluated quantitatively and it 
is shown that there is enough information to solve the inverse problem (except for the 
elongation of the scattering phase fund ion in the case of a very clear atmosphere). 

 
 

The microphysical and optical parameters of the 
atmosphere can be determined from the characteristics 
of the attenuated or scattered radiation field by 
different methods. Most of these methods employ 
measurements of the direct radiation and angular 
measurements of the intensity scattered radiation 
(Bouguer’s method for measuring the optical 
thickness, determination of the scattering phase 
function from the measured sky-brightness indicatrix 
at the parallel of altitude of the sun, etc.). 

Although there are no great difficulties in 
performing angular measurements of the scattered 
radiation at the ground, airborne measurements present 
considerable technical difficulties. First, the structure of 
aircraft makes it impossible to point measuring 
instruments into the upper hemisphere. Second, 
unfavorable flight conditions – rough air, yawing, 
vibration, etc. – can sharply reduce the accuracy of such 
measurements and even make them completely 
ineffective (for example, measurements performed by 
Bouger’s method). To eliminate these difficulties the 
measuring part of the instrumentation must be placed on 
a gyrostabilized platform, which, in its turn, sharply 
increases the weight and power requirements of the 
instrumentation, etc. For this reason in performing 
airborne measurements it is simpler (although not as 
easy as on the ground) to measure hemispheric radiation 
fluxes. The spectral instrumentation for performing such 
measurements has been developed at the Laboratory of 
Short-Wavelength Radiation of the Scientific-Research 
Institute of Physics at Leningrad State University and it 
has been installed on aircraft; the measurements 
conditions are described in Refs. 1 and 2). 

In this connection there arises the question of the 
information content of flux measurements, i.e., the 

possibility of obtaining information about the optical 
and microphysical parameters of the atmosphere and 
separate layers of the atmosphere from measurements 
of the angle-integrated characteristics of the radiation. 

The first attempt at reconstructing the vertical 
profiles of the optical thickness  and the photon 
survival probability  from spectral measurements of 
upward and downward fluxes was made in Ref. 1. In 
Ref. 1 the inverse problem is solved with the help of 
analytical inversion of the two-flux approximation, but 
neither the random errors in the experimental 
measurements, nor the systematic error, introduced by 
the inaccuracy of the two-flux approximation was 
evaluated. More accurate methods are described in 
Refs. 3 and 4, but these works are devoted solely to the 
determination of the vertical profile of the true 
absorption coefficient for light, though the fluxes carry 
more information. In the classical book Ref. 5 it is 
stated on p. 123 that "the spherical albedo depends on 
the optical thickness of the atmosphere 0, the scattering 
phase function x(), and the parameter " and 
previously" the spherical albedo is the ratio of the 
energy reflected by the entire planet to the energy 
incident on the planet from the sun". It is obvious that 
this assertion is valid not only for the albedo (upward 
fluxes normalized to the incident fluxes), but also for the 
fluxes leaving the atmospheric layer under study. 

We shall apply to the problem of reconstructing the 
parameters of the atmosphere from flux measurements 
the well-known methods, described, for example, in 
Refs. 6 and 7, for solving inverse problems. The 
measurements are performed at n + 1 levels in the 
atmosphere; this corresponds to the separation of the 
atmosphere into n layers (Fig. 1). The spectral 
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hemispherical fluxes are measured: the incident fluxes 

iF  (i = 2, , n + 1) and the upward fluxes iF  

(i = 2, , n + 1) (there are no measurements at the 
hop boundary of the atmosphere). The zenith angle of 
the sun  and solar constant S are assumed to be 
known, and the surface is assumed to be defined as 
 

 (1) 
 

a result of which measurement of n 1F
  is no longer 

informative (relative to the optical parameters). Here 
and below, to simplify the formulas , which denotes 
the measured monochromatic quantities, is omitted. 
 

 
 

FIG. 1. The model of the atmosphere. 
 

The atmosphere is characterized by the following 
optical parameters: the optical thickness ) (the total 
optical thickness of the atmospher'e is 0), the photon 
survival probability (z), and the scattering phase 
function xz(). Since  is a monotonic function of z, it 
can be used as the vertical coordinate. Knowing ,ü  

,S ü  A0, 0, (z) (or z()), (), x() the radiation 
field in the atmosphere can be calculated completely 
and the values of the measured quantities can be found 
by solving the transfer equation. To facilitate the 
solution of this equation parameterization is, as a rule, 
performed, i.e., , () and x() are approximated by 
piecewise-constant functions in separate atmospheric 
layers: i, i xi(), where i = 1, , n and n is the 
number of layers (here i is the optical thickness of the 
i-th layer). The angular behavior of x() cannot be 
determined from flux measurements, so that only the 
problem of determining one of the basic parameters of 
the scattering phase function can be formulated. It is 
natural to choose the elongation of the scattering phase 
function of this parameter: 
 

 (2) 
 

To solve this problem we shall employ a 
one-parameter family of scattering phase functions 
according to the classification given by 
O.D. Barteneva8. The values of õ() for arbitrary G 
(from 1 to 40) are obtained by interpolating between 
the phase functions of this family. 
 

 
 
FIG. 2. Asymmetry of different scattering phase 
function as functions of the zenith angle of the Sun. 

 

Figure 2 shows the calculations of ,Gü
 

performed for different zenith distances of the sun 0 as 
a function of the number of the scattering phase 
function n in Barteneva’s classification8 (in the graph 
R is the Rayleigh scattering function). 

The transfer equation was solved by the 
Monte-Carlo method. This method is convenient for 
problems of this type because it gives both the 
quantity of interest as well as its variance. We 
employed the standard method of weighted modeling 
"without absorption" and "without leaving the 
medium"9,10 truncating the trajectories when the 
photon weight drops below 0.1 of the required 
computational accuracy. 

Thus the collection of optical parameters A0, i, i, 
i (i = 1, , n) permits determining completely the 
measured quantities iF  and iF  (i = 2  n+1). We 

shall formally write the measured fluxes as fi 
(I = 1,,n): fi is 1iF

  for i = 1,,n and -n 1iF
  for 

i = n+1,...,2n–1; xi (ii = 1,,3n) are the optical 
parameters of the atmosphere: xi is I for i = 1,,n, i–n 
for i = n+1,,2n, and Gi–2n for i = 2n+1,,3n. Then 
the collection of numbers x1 can be interpreted as the 
coordinates of the point x in a 3n-dimensional space, 
while the collection of numbers f1 can be interpreted as 
the coordinates of the point F in a (2n–1)-dimensional 
space. Solving the transfer equation (the direct 
problem) is an operation that to each point X 
associates a point X a point F; this can be written as 
 
F = KX (3) 
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where K is the solution operator of the direct problem. 
We note some properties of the operator K: a) an exact 
analytical expression does not exist for K and b) K is 
nonlinear over all coordinates x1. We expand the 
operator K in a Taylor series about the point F0 = KX 
 

 
 

where the symbol 
0( )dK X

dx
 is the operator for 

differentiating K, evaluated at the point problem X0. 
Writing F – F0 = F; and X – X0 = X and 
truncating the series at the first derivative gives 
 

 (4) 
 
Equation (4) is linear the unknowns Õ. It is 
expressed in terms of the coordinates by the matrix of 
the partial derivatives 
 

 
 
Then Eq. (4) in the coordinate form is: 
 

 
 
The foregoing discussion shows that the optical 
parameters of the atmosphere can be found from flux 
measurements by an iteration method, namely, a 
zeroth-order approximation XO is chosen (for example, 
simply the average model of a clear atmosphere) and 
the direct problem is solved for it - the fluxes FO are 
determined. Once the difference F between the 
observed and computed fluxes and the matrix of the 

partial derivatives 
0( )dK X

dx
 (see below) have been 

calculated Eq. (4) can be solved, the corrections X to 
the zeroth-order approximation can be determined, 
and the next approximation can be obtained: 
X1 =X0 + X, etc. 

Observations at the boundaries of each layer (top 
and bottom) give two quantities that depend on the 
optical parameters of the given layer, namely, the 
outgoing fluxes. In addition, because the divergence of 
the total flux (influx of radiant energy into the layer) 
is nonzero the photon survival probability 1 can be 
found directly from it. 

Equation (4) can be solved by Tikhonov’s method 
of regularization5. This method is preferable because 
the regularization takes into account correctly the 
measurement error and also because the number of 
unknowns in Eq. (4) is formally greater than the 
number of equations. One should not be daunted by 
this last fact, since the method of regularization was 
developed precisely for choosing from an infinite set of 
possible solutions (and inverse problems always have 

an infinite number of solutions because of the presence 
of measurements error), the physically meaningful 
solution, and the error in the solution can be 
determined. 

Consider the calculation of the matrix of partial 

derivatives 1

j

f
x

 
   

. To find this matrix we employed 

the Monte-Carlo method9. In this method photon 
transfer is modeled by identical sequences of random 
numbers but for different models of the atmosphere 
differing by a change in one of the parameters X (X1 
is quite small). The computational scheme of the 
algorithm is analogous to the solution of the direct 
problem, except that local values are employed to 
calculating the fluxes. 

Analysis of a concrete form of the matrices of 
partial derivatives for given models of the atmosphere 
may give a preliminary answer to the question of the 
information content of the measurements. For this it is 
convenient to employ logarithmic derivatives (see 
Ref. 7), which show the relative change in the flux 
owing to a change in the optical parameters. It is obvious 
that only those parameters for which the logarithmic 
derivatives exceed the measurement error can be 
determined (more precisely, they can be determined 
with a variance that is less than the a priori value). 

We shall first study as an example the 
calculations performed for a four-layer model of the 
atmosphere, but the parameters of only one layer are 
determined. The parameters of the starting optical 
model of the atmosphere were taken from observations 
performed on October 25, 1970 at  = 500 nm 
(Table 1)1. 
 

TABLE 1. 
The starting optical model of the atmosphere. 

 

 
 

For the indicated layer between the 700 and 
900 mbar levels the matrix of values of the logarithmic 
derivatives has the form 
 

 
 
Examination of this matrix shows that the downward 
outgoing flux from this layer is the most informative 
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parameter for determining , the upward outgoing 
flux is most informative for determining G, and the  

relative radiant influx is most informative for 
determining . 

TABLE 2. 
 

The results of the iterative process for single layer. 
 

 
 

The data in Table 1 were calculated based on 
calculations of the indicated quantities in the two-flux 
approximation1 (except for the values of G(0)). The 
experimental data and the Monte-Carlo results (in 
units of F

 (H1) are presented in Table 2. 
It follows from Table 2 that, first, the iteration 

process converges and, second, even the first 
approximation gives in our example values of 

 , ,G     with whose help  , ,F F 
   can be 

calculated with an error less than the error of made in 
measuring them. To simplify the analysis we study an 
example in which the optical parameters of one layer 
were determined more accurately. But even in this 

example varying  (0) (0), ,G
     over a range of ±50% 

changed the flux F
 (H1) incident of the top boundary 

of the layer by ±2%. This indicates that the corrections 
to the starting parameters of the atmospheric model 
must be found simultaneously for all layers into which 
the atmosphere is separated. The information content of 
flux measurements for this case will be studied in Part II 
of this work. 
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