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We study the stability (against longitudinal aberration measurement errors, zone 
marking errors, and errors in the specification of a priori information) of an algorithm for 
reconstruction of the surface profile of an optical component, giving the radius of 
curvature of the wavefront, the radius of curvature of the component surface begin 
monitored, and the refractive index. We propose relations that enable one to estimate the 
monitoring error in the component profile using longitudinal aberrations in various ways. 

 
 

The receiving antenna is a basic component of 
devices for atmospheric studies, which usually employ 
either a Cassegrain telescope or a large-aperture 
refractor. We show here that the optics in these 
devices can be efficiently monitored using a 
longitudinal aberration method. 
 

 
 

FIG. 1. The arrangement for aspherical wavefront 
 control by longitudinal aberrations Sk. 

 

The layout for optical control based on longitudinal 
aberrations is shown in Fig. 1. The wavefront  formed 
by the controlled component, with radius of curvature 
R0 at its vertex, is nonspherical; i.e., it has a wave 
aberration W. For this reason every zone of the wave 
front at a height Kk from the optical axis has its own 
radius of curvature and therefore creates its own image 
of the source Ok, producing a caustic. 

In other words the wave aberration Wk in zone k 
produces a longitudinal spherical aberration Sk, 
which is equal to the distance between the paraxial 
focus (i.e., the focus formed by zones located near the 
optical axis) and the focus of k-th zone. By placing a 
fiber F at the focus Ok of each zone, one can observe a 
shadow pattern that takes the form of the letter  
superposed on some sort of zone marker that has been 
applied to the component’s exit pupil. The curve on 
which the points of the wave front cross section are 
located, i.e., its profile and the corresponding profile of 
the controlled component can be calculated, provided 

that the arrays of zone markers and longitudinal 
aberrations are known. The wave aberration W and 
deviation of the actual component’s profile from the 
nominal one can also be calculated. This procedure is 
well known2, but it is not used in practice for the 
following reasons: 

1. Precision of control is low due to instability of 
the technique with respect to errors in the 
measurement of Sk of radius of curvature R0. In 
analyzing the sources of error, D.D. Maksutov took 
account only of the capabilities of the equipment then 
available, but did not carry out a detailed analysis of 
the method or optimize the control scheme. 

2. The necessity of digital integration. This 
disadvantage was important in the 1930’s, when the 
design procedure was formulated, but has been 
completely eliminated with the advent of computers. 

3. The development of alternative control 
methods. The procedure discussed in this paper was 
proposed for quantitative control of spherical 
mirrors from their centers of curvature. The problem 
of quantitative control of spherical surfaces was 
solved with the appearance of Filber’s method3 and 
with the development of interferometry and 
automated devices for processing the 
interferograms4. But the method can also be used to 
control optical components that form aspherical 
wavefronts, such as aspherical concave mirrors and 
symmetric lenses1. Since the fiber in that case breaks 
up into distinct elements, it is possible to Improve 
the precision of Sk measurements compared with 
the case of spherical mirrors. The application of 
Filber’s method and interferometry to the control of 
aspherical fronts requires the use of additional 
optical compensating elements to cancel the 
influence of asphericity. The method’s capabilities 
are then limited, the control procedure becomes 
complicated, and the reliability of the results is 
reduced. For these reason, we must discuss the 
sources of errors in the control method based on 
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longitudinal aberration measurements. Using Fig. 1 
and a simple geometrical relation one can write 
 
 

 (1) 
 
where xk is the height of the k-th zone the wave 
front, k is the aperture angle of the k-th zone, Sk 
is the longitudinal aberration of the k-th zone, yk is 
the sag, Rk is the radius of curvature of the k-th zone. 
If there is an error due to wave aberration Wk in the 
k-th zone it leads to deviation of the normal to the 
wave front by an angle , and to the magnification of 
the longitudinal aberration by the quantity (Sk). 
For relation (1) one obtains 
 

 
 
where  = dk. 

Ignoring small values and using the obvious 
equality dRk = (Sk) one can write 
 

 (2) 
 
The error in determination of the longitudinal 
aberration results in the step-wise error in the profile 
of the component. In order to affirm this thesis we 
have calculated the profile of a parabolic mirror. 
Longitudinal aberration was assumed to vanish in all 
zones with the exception of the eleventh, where  
an error was assumed to be present. Figure 2  
shows the numerical results obtained with  
the "Profil" software package. The latter is  
based on spline interpolation, and is intended  
for use in reconstructing wavefront profiles and  
the profiles of controlled components using 
longitudinal aberrations. A detailed description 
appears in Ref. 1. 

 

 
 

FIG. 2. Deviation of the parabola surface profile (D/R0 = 1000/2000) in the case when the error 
(S11) = 65 m in longitudinal aberrations of the 11-th zone occurs; a) is the deviation of the profile from 
parabola at the 11-th zone; b) is the deviation of the profile from the closest parabola. 

 
From an analysis of the curves in Fig. 2, one can 

write down the obvious relation 
 
 

 (3) 
 
where c = 1 if the deviation of the wave front is 
calculated, c = 2 if the deviation of the profile of a  

mirror is calculated, c = (1 – n) if the deviation of 
the profile of a lens surface is calculated, and 
 

 
 

The combination of expression (2) and (3) yields 
 

 (4) 
 

TABLE 1 
 

The results of calculations of amplitude Ak of error in the surface of parabola D/R0 = 1000/2000 
obtained using the "Profil" package: p

kA  and (from Eq. (4)) t
kA . 
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In order to verify Eq. (4) we made model 
calculations using the "Profil" package for a perfect 
parabola with D/R0 = 1000/2000. The numerical 
results obtained using the package, p

kA  and (from 

Eq. (4)) t
kA  are given in Table 1. A comparison of and 

p
rA  shows the high accuracy of Eq. (4). Therefore, it 

can be used to analyze the stability of the "Profil" 
algorithm. 

Control based on longitudinal aberrations usually 
makes use of either square-root spacing or uniformly 
spaced zones. The height k of a zone is then given by  
 

 
 

where M is the total number of zones. Introducing the 
notation 
 

for square-root marking, 
I = 1 

for the uniform marking, 
I = 2 

 

and using the relation sink  xk/R0, one obtains 
 

 (5) 
 

The dependence of I
k  on the total number zones 

for different marking schemes is shown in Fig. 3. 
 

 
 

FIG. 3. The dependence of  value on the kind of 
zones division, total number of zones, and on the 
particular number of a zone k where an error occurs. 

 
Fig. 3 enables one to draw the following 

conclusions: 
– at the edge of a component, square-root 

marking scheme is more stable than uniform marking,  

but the opposite is true at the middle of the 
component; the situation changes to the opposite one, 

– the lowest stability of the square-root marking 
scheme is in the central zones, and it is at the edge for 
uniform marking. 
 

ERRORS IN THE MEASUREMENT  
OF LONGITUDINAL ABERRATION 

 
It might be expected that errors in Sk 

measurements in a few zones would lead to an 
algebraic sum of amplitudes of the profile’s errors; this 
is confirmed by calculations based on the use of 
"Profil" package. 

Let I
a  be the admissible error in a longitudinal 

aberration measurement with I = 1 for square-root 
marking and I = 2 for uniform marking, where the 
maximum wavefront error is 3 times smaller than the 
Rayleigh criterion, i.e. 3W0 = /4 = 0.14 m. 
Therefore from (5) we have 
 

 (6) 

 

The relationship (6) determines the maximum 
measurement error for longitudinal aberration. 

A fiber of diameter 2 is placed at the focus Ok 
of the k-th zone with a residual error , the value of 
which is determined by the length of a segment d. It 
has been empirically established that   0.1 d. 
Using relation (6) and geometrical considerations, 
the requirements imposed on the fiber size in a 
shadow device are 
 

 
for square-root marking,  

 
 

                       (7)
 

for the uniform marking 

 
The results of estimation using (7) are presented 

in Table 2. 
Thus, (7) can be used to choose the fiber to be 

employed in making diffraction measurements  
of longitudinal aberration. On the other hand, if  
one has a shadow device with a calibrated  
fiber of diameter 2, it is possible to determine  
the achievable control quality. For this, one can  
use (7): 
 

 

 (8) 
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TABLE 2 
 

The dependence of fiber radius p[mm] for a shadow device on the total number D/R0 of zones on a 
component, as well as on the kind of zone marking on the component, which provides for diffraction 
quality control. 

 

 
 

ERRORS IN ZONE MARKING 
 

Let the marking produce the error xk in the k-th 
zone height xk. As a result, the actual height of the 
k-th zone is a

k k k.x x x    For simplicity, let us make 
an estimate for a parabolic wavefront, for which 
 

 
 

For a parabola, 
 

 
 

The error xk is then equal to the measurement error of 
longitudinal aberration, namely 
 

 
 

Using the relation (5), one finds that for high-quality 
control (bearing in mind that 3W = /4) it is necessary 
that the zone be marked with an error of no more than 
 

 (9) 
 

The results of estimation based on (9) are presented in 
Table 3. 
 

TABLE 3 
 

The dependence of the residual error of zone marking xk(mm) on D/R0, the total number of î zones 
M on the component, and the kind of zone marking which provides for diffractive control quality.  

 

 
 

For a ruler marked off with a certain residual 
error x, one can determine from the relation (9) the 
quality of surface it provides: 
 

 (10) 
 

MEASUREMENT ERRORS OF THE RADIUS OF 
CURVATURE 

 
The profile control errors due to measurement 

errors of the radius of curvature of a wavefront are 
closely related to the choice of reference curve. For 
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example, if R is the error in the measurement of R0 
measurements then the deviation of the sag at the edge 
of the entrance pupil of the component is 
 

 
 

The quantity A gives the maximum deviation of 
the mirror’s profile from an ideal mirror with the 
radius R0. For a parabolic mirror with D/R0 = 
250/1000, we have A = R/64. It is clear then that 
the to provide the requisite diffraction quality, the 
radius of curvature must be measured with an error of 
no more than 
 

R0  64  0,07 = 4,5 m. 
 

It is clear that such requirements are not realistic. 
In this situation it is more creative to calculate the 
radius of curvature of the controlled wavefront. If we 
have available an array of points with known 
coordinates and equation of the curve, we can 
calculate R0 provided that other parameters take their 
theoretical values. 

The algorithm for calculating R0 can be either the 
least squares method or it can be based on an a priori 
specification of the zone through which the reference 
curve must pass. Both approaches are equivalent and 
either can be used. 
 

 
 

FIG. 4. The dependence of amplitude of an error in 
the profile of parabolic mirror (D/R0 = 250/1000) 
on the error of curvature radius measurement 
R/R0. 

 
In Fig. 4 the results of a calculations of the 

parabolic mirror profile with D/R0 = 250/1000, 
obtained with the "Profil" package, are presented. 

One can see from Fig. 4 that diffraction quality 
control (with 3W = /4) can be obtained if the 
measurement error in the paraxial radius of curvature 
of the wavefront satisfies the condition 
 

R/R0 = c 0.1 (%). (11) 
 

The experience of working with the "Profil” 
program allows us to conclude that the behavior in 
Fig. 4 takes place not only in this specific case, but is 
also valid for assessing the amplitude Ak of the profile 
using the empirical relationship 
 

 (12) 
 

THE INFLUENCE OF A PRIORI PARAMETER 
MEASUREMENTS 

 
The accuracy of lens control using measurements 

of longitudinal aberrations by transillumination is 
influenced by errors in the measurement of the first 
surface radius R1, the distance to the light source Ds, 
and the refractive index n. Ultimately, all these 
factors determine the measurement errors in the 
paraxial radius of wavefront curvature. 

As a result, one should take R in (12) in the form 
 

 (13) 
 
where Ra is the residual error of the paraxial focus, 
determination caused by measurement errors in a priori 
constants, and Rf is the residual error of the paraxial 
focus measurements. 

Using Newton’s formula and the expression for 
the focal length of a lens7 one can write 
 

 (14) 
 

 (15) 
 

 (16) 
 

where Ds is the residual error on measurements of the 
distance Ds between the lens and the light source, and 

I
kf  is the focal length of the collimator used to 

simulate a source at infinity; xk is the residual focus 
error of the collimator at infinity; R1, R2 are the radii 
of the first and second surfaces, respectively; R1 is the 
residual error in measurements of the first surface 
radius; n is the residual error of the refractive index 
measurements; N is the deviation of the first surface 
from a flat surface, expressed in terms of interference 
fringes;  is the wavelength of light. 
 

THE INFLUENCE OF THE LENS MATERIAL 
INHOMOGENEITY 

 
Inhomogeneities in the optical glass can result in 

additional phase shifts in the corresponding zone of a 
lens. The wave aberration due to this phase shift can be 
determined using the simple relationship 
 
W = n d, 
 
where n is the maximum deviation of the refractive 
index from the mean, and d is the thickness of the lens 
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blank. For an admissible wave aberration W = 0. 14 
m and d = 30 mm, 
 
n = 4.7  10–6, (17) 
 
which is a much more stringent requirement on 
homogeneity than for class A (Ref. 8). 

One can draw the following conclusions based on 
the results of the above investigation. 

High quality-control accuracy based on 
measurements of longitudinal aberrations can be 
achieved only for the case of mirrors and wavefronts, 
provided that accuracy of zone marking and 
measurements of S and R0 is reached (see expressions 
(8), (10), (11)). 

High-accuracy control of the lens surfaces by the 
longitudinal aberration method is possible if the 
required accuracy of zone marking and measurements 
of S, R0, R1 and Ds is provided and the glass of the 
appropriate class is used (see expressions (8), (10), 
(15)). The inhomogeneity of the glass can be 
compensated for, thus exhibiting no noticeable effect 
on the final results. 

It is impossible to ensure high-accuracy control of 
reflecting surfaces by transillumination (as, for 

example, in the case of convex mirror with polished 
rear surface) because of very rigorous constraints on 
the inhomogeneity of the refractive index. 
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