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We present an expert system for processing line spectra by use of operations like union, 

intersection, computation of relative complements, i.e., using the basis of set theory. The system 
stores and takes into account the spectroscopic information, considering the ordered set of lines 
characterized by the line center, its intensity, half-width, and shift as properties of set elements. All 
operations applied to spectra, use the comparison of lines of two spectra what makes a typical 
problem of pattern recognition, because it is a known that experimental spectra are measured with a 
certain error. 

 

Introduction 

At present investigations of molecular gases by 
means of spectroscopic techniques are being 
conducted while recording a lot of spectra under 
different conditions, i.e., varying temperature, 
pressure and optical thickness. Such an approach 
enables one to obtain detailed information on both 
strong and weak lines. Modern spectrometers are 
capable of recording the spectra containing large 
number of spectral elements within wide spectral 
ranges. For example, the spectrum of electric discharge 
in molecular hydrogen contains more than 40 
thousand spectral elements; the HITRAN databank 
contains information on more than 1 million lines; 
Schwenke database on water vapor spectrum contains 
more than 300 million lines.  

Owing to that huge bulk of information, 
obtained in measurements or calculated, there is a 
necessity in developing specialized software, capable 
of storing, making comparison and uniting the 
spectroscopic information obtained. Such software 
should take into account many spectroscopic aspects 
of the problem to be solved, including the presence 
of lines of different gases in the spectra, lines of the 
molecular isotopic modifications, various conditions 
at measurements of the spectra, as well as errors in 
determination of spectral line parameters.  

Spectra can be considered as sets, each element 
of the set (single line) being characterized by a 
certain set of characteristics. It can be the centers 
and intensities of spectral lines, coefficients of 
broadening and shift, parameters determining 
temperature dependence. Some spectroscopic problems 
are presented as operations with sets. For example, 
the so-called “trivial” interpretation of spectral lines, 
when the initial and final energy levels of some 
transition are known exactly, is in seeking lines whose 
centers in calculated and experimental spectra 
coincide that, obviously, is equivalent to operation of 
finding the intersection between the two sets.  

Such an operation is carried out in a routine 
regime; however, large bulks of spectroscopic 
information make the processing difficult, besides, the 
measurement errors and difference in measurement 
conditions, demand engaging highly skilled experts. 
Therefore, the problem of generating special software 
codes for processing “large” spectra, obtained under 
various conditions, becomes very urgent.  

The aim of this study was to generate the 
software code for processing the spectra (union, 
seeking differences, and so on) using the methods of 
set theory and pattern recognition. The system should 
provide for storage and account of the spectroscopic 
information, considering the ordered set of lines as the 
characteristics of set elements, where each line is 
defined by the line center, intensity, half-width, and 
shift. 

1. Operations applied to spectra 

Let us consider spectra as sets of elements with 
spectral characteristics. As an example, let us 
consider the A set to be the H2O spectrum in the 
region from 6000–10000 cm–1, recorded at 600 K, 
and the B set being the spectrum of H2O, HDO and 
D2O mixture in the region from 5000–12000 cm–1, 
recorded at Ò = 296 K. For simplicity, we shall 
consider that A and B sets contain only the centers 
and intensities of lines determined with the same 
accuracy in both sets. 

As known, it is possible to define the operations 
of union, intersection and relative complements for 
the sets.  

Union of the À and Â sets is the set Ñ = A ∪ B, 
where Ñ = {x | x ∈ A or x ∈ Â}. In our case, the Ñ 
spectrum is the data bank for the spectral range from 
5000–12000 cm–1 containing the lines of isotopic 
modifications and weak lines of water vapor 
corresponding to transitions to high rotational levels, 
and the lines of hot bands (in the range between 
6000 and 10000 cm–1). Simple union of two lists of 
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lines can, obviously, lead to errors. For example, the 
Ñ set can contain two sets of certain lines that 
belong to À and Â sets simultaneously. In order to 
avoid the replication it is necessary, first, to establish 
the correspondence between the same lines in both 
spectra. Since the temperatures at which spectra were 
recorded differ, the recalculation of line intensities to 
same temperature is necessary. Therefore, the 
operation of simple union of the sets requires some 
preliminary analysis and pre-calculation.  

Intersection of the À and Â sets is the set 
Ñ = A ∩ B satisfying the condition Ñ = {x ∈ A and 
x ∈ B}. In our case, this involves the spectral lines of 
only H2O in the region from 6000 to 10000 cm–1 
corresponding to the temperature of 600 K (assuming 
that at T = 600 K all lines of the B spectrum are 
seen). Thus, intersection involves the spectral lines of 
basic modification in the region of 1.3 μm, except for 
the lines that are seen at a high temperature. It is 
obvious that additional analysis of the situation and 
detailed comparison of lines are necessary, as in the 
previous case.  

Relative complement. Let a fixed set S be given 
and À ⊂ S. The set À′ = S\À is called a relative 
complement of À set in the sense that À′ completes the 
set À to S. In our example, the relative complement 
will contain only the HDO and D2O lines in the 
region from 6000 to 10000 cm–1, and all lines of the Â 
spectrum in the region from 5000 to 6000 and from 
10000 to 12000 cm–1.  

All these operations being the standard 
operations with sets are often applied in processing 
spectra and spectroscopic data banks. However, in 
the case with line spectra, it is important to 
determine also some additional operations.  

First, it is necessary to determine the operation 
of isolating a portion of the spectrum according to 
certain conditions. Such an operation is, obviously, 
the operation of identifying a subset. It is important 
to note here that isolating a subset of the same lines 
(determined according to a certain condition, 
formally identical to two spectra) can lead to 
different sets of lines. Therefore, before doing the 
line selection, it is necessary to establish the 
correspondence between the lines of the two spectra.  
 Second, it may happen that the spectra could 
have been recorded under different conditions, like 
different sensitivity, and different spectral resolution. 
Therefore, a procedure is needed for recalculating, 
though only approximately, the line parameters, that 
is for generating a new set. 

All these operations assume the recognition of 
identical lines in two different spectra; therefore, it is 
necessary to apply methods of the pattern recognition 
theory for solving this problem.  

2. The task of pattern recognition  

At present, application of the pattern 
recognition theory to spectroscopy is limited by some 
particular problems. In a number of studies, methods 

of the pattern recognition theory were applied to 
solving some problems in molecular spectroscopy 
(see, for example, Refs. 2 to 5).  

There are two basic types of classification 
methods in the pattern recognition theory: with 
training and without training. They differ by the 
characteristics of problems to be solved. The methods 
of one type solve a classification problem at a fixed 
number of classes set by an application designer. The 
methods of the other type are aimed at revealing the 
classes in the set of objects available.  

In the literature, a problem of pattern 
recognition is stated as follows. Let Õ be the space of 
descriptions, i.e., of the characteristics of objects (the 
so-called attribute space). In our problem, centers 
and intensities of lines do compose this space. Let U 
be the space of solutions. Every object from the space 
Õ is presented as a point. To solve the problem of 
pattern recognition means to construct a 
representation ( ) : ,u x X U→  which is the best in a 

certain sense, for example, in the sense of proximity 
to the u*(x) representation set by a “teacher.” If the 
full probabilistic description of both Õ and U spaces 
is known, it is possible to construct the Bayes 
estimator. In other cases, we have to estimate either 
simultaneous distribution densities, or directly the 
decision rule. This rule is nothing but the separation 
surface in the description space Õ. Figure 1 presents 
the objects of two classes as an example (circles and 
crosses). If the attributes have been chosen 
successfully (in our case, it is the x and y 
coordinates), the objects of different classes will be 
in different domains of the attribute space. In this 
case, to formulate the decision rule it is sufficient to 
determine the separation line.  

 

 
Fig. 1. Two classes of recognizable objects and separation 
function f. 

 

In processing spectra as sets, it is necessary, 
while doing any operation, to compare the elements 
of two sets and to establish the correspondence 
between them. Since the line parameters are known 
with a certain sometimes not small error the problem 
arises on recognizing the corresponding line pairs. 
Such a problem is typical in the pattern recognition.  
 Let us consider the Rosenblatt method realized 
in this study while constructing the recognition 
algorithm. The method was proposed by 
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F. Rosenblatt1 in 1959 for the neural networks (NN). 
The Rosenblatt perceptron (Fig. 2) has the threshold 
activation function f.  

 

 

Fig. 2. Scheme of the Rosenblatt perceptron. 

 

The procedure of adjusting the weights of 
transneuronal (synaptic) connections at training the 
single-layer perceptron can be presented by an 
iterative scheme4:  

 ( 1) ( ) ,ij ij i jw t w t x d+ = + α   (1) 

where xi is the signal at the ith input of the system; 
dj is the desirable (ideal) result at the jth output, 
and α (0 < α < 1) parameter is the weighting 
coefficient (learning velocity). The weighting 
coefficients change only in case, when the real output 
value does not coincide with the ideal output value. 
Rosenblatt’s algorithm is constructed in the 
following way:  

1. Weighting coefficients of NN are initialized 
by small random values.  

2. The next learning example is applied to the 
NN input.  

3. If the NN output yj does not coincide with 
ideal output dj, the modification of the weights is 
being done following Eq. (1). 

4. The calculations are reiterated starting from 
Point 2, until ∀i : yi = di or unless the weighting 
coefficients stop changing. 

3. Realization of pattern recognition 
method 

In the problem on comparing two spectra, it is 
convenient to use the above-described Rosenblatt 
perceptron or, what is more correct, its analog, the 
single-layer neural network (Fig. 3), for constructing 
the algorithm of recognizing the lines which are 
identical in two spectra. 

The p-dimensional vector of characteristics {xi, 
i = 1, 2, …, p} is applied to the network input (such 
line characteristics of the first and second spectra as 

line centers and their intensities are taken). For 
certainty, we shall consider the case, when p = 5.  

 

 
 

 
 
 
 
 
 
 

Fig. 3. The single-layer Rosenblatt perceptron (single 
output signal). 
 

Having these additions in mind, the perceptron 
now takes the form presented in Fig. 3, where p is 
the dimensionality of the initial data (the number of 
characteristics used for classification); xi is the 
component of input vector of characteristics,  
i = 1, …, p; wi  are the weighting coefficients between 
input and output layers, i = 0, 1, …, p; y is the 
output value of the network neuron (network 
output): 
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is the neuron activation function. It is proposed to 
use, at the NN output, the coefficients of correlation 
between line intensities of first and second spectra, as 
such an activation function, namely 
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To make use of operation with NN it is 
desirable that the initial data are used not in the 
original form but after a certain preprocessing. We 
shall normalize the data by the typical values, that is 
statistical mean and the variance, rather than the 
extreme ones: 
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In this case, the major bulk of data will have 
same scale that means that the typical values of all 
variables will be comparable. However, now the 
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moreover, the maximum spread of the ix
�  values is not 

known beforehand. It may be insignificant for the 
input data, but the output variables will be used as 
standards for the output neural signals. We shall 
consider the case, when the neurons are sigmoids, that 
is the output signals take values only within a unity 
interval. In order to establish the correspondence 
between the learning sample and the neural network, 
it is necessary to limit the range within which the 
variables may vary. 

The linear transformation presented above does 
not allow one to normalize the major bulk of data 
and to limit, simultaneously, the range of values 
allowed for these data. A natural way to resolve this 
situation is to use the activation function of the same 
neuron for the data preprocessing. For example, the 
non-linear transformation 
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normalizes the major bulk of data and simultaneously 

guarantees that [0,1].ix ∈�   

If we denote the desirable signal value at the 
network output as d  (teacher’s instruction), the 
system error for the given input signal (mismatch 
between real and desirable output signals) can be 
written as follows: 

 ,

k k ky dε = −   

where k is the number of a pair in the learning 
sample, k = 1, 2, …, n1 + n2, n1 is the number of 
vectors of the first class (right answers of the 
network in the learning sample), n2 is the number of 
vectors of the second class (wrong answers). 

We shall use the minimum criterion of the root-
mean-square-error function as an optimization 
functional: 
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where ,

A B
i jν ν  are the centers of lines with the 

numbers i (in the first) and j (in the second 
spectrum); µ is some coefficient. In the case when the 
NN error functional is set, the main problem in 
teaching neural networks is its minimization. The NN 
teaching procedure is reduced to correcting the 
weights wi of the connections. Before training, the 
NN weight coefficients are set arbitrarily, for 
example, by resetting to zero.  

At the first stage, the learning samples are 
applied to the NN input in a certain order. Using the 
learning sample EL an error (learning error) is 
calculated at each iteration and the NN weights are 
corrected following some algorithm. The aim of the 

weight correction procedure is minimization of the 
error EL.  

At the second stage of teaching, the control of 
the NN operation is carried out. Control samples are 
applied to the NN input in a certain order. Using the 
control sample the error EG (error of generalization) 
is calculated at each iteration. If the result is poor, 
modification of a great number of teaching samples is 
done and the NN learning cycle is repeated. After 
some iterations of the learning algorithm, EL falls 
almost down to zero, while EG first falls, but then 
starts to increase. This situation is called the 
“overtraining effect.” In this case, the learning 
should be ceased.  

In the case of a single-layer network, training 
algorithm with the participation of a teacher is quite 
simple. Desirable output neural values of a single layer 
are certainly known and the weight adjustment of the 
synaptic (interneural) connections is performed in the 
way to minimize the error at the network output.  

Recognition algorithms described here were 
applied to building up an expert system for processing 
the line spectra. The expert system allows one to 
make the operations with spectra described above, 
that is, to sum those up, to find the relative 
complements and unions of spectra. Thus, the line 
identification in two spectra is carried out using the 
above-described algorithm. As a possible example of 
the system use, we can mention its application to 
processing the calculated Schwenke spectrum and the 
experimentally measured water vapor spectra that 
will be described in the subsequent papers.  
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