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Time series of wind velocity measured with a Doppler lidar at different altitudes have been 
analyzed using the local coherence function of the wavelet transforms of signals (Izvestiya RAN, 
Atmospheric and Oceanic Physics 37, No. 5, 584–591 (2001)). Feasibility of isolating groups of 
wind data with the coordinated behavior is demonstrated using a particular measurement session. It 
is shown that the coherence function allows one to isolate 2-D time–frequency domains with the 
high correlation of the wind velocity data upon the preliminary compensation for the local phase 
shifts of the same scale. The approach considered can be used for the detection and study of the 
dynamics of coherent formations in the atmosphere. 

 

Introduction 

The investigation into the spatiotemporal structure 
of the 3-D wind velocity fields in the atmosphere is 
mostly based on the statistical analysis of the series of 
measurement data compiled: calculations of the mutual 
correlation functions, mutual spectra, coherence and 
phase spectra, etc. The basic mathematical instrument 
used in the processing and study of the signal 
structure in this case is the Fourier transform. Due to 
the efficient computational algorithms of the Fast 
Fourier Transform,1 the spectral approach finds a 
very wide application in the analysis of experimental 
data.  

However, along with the obvious advantages, 
the Fourier-transform analysis has certain 
disadvantages if applied to treatment of the 
atmospheric processes. In particular, the assumption 
of steady-state processes is required. The problem of 
assessing the influence of the finiteness of the 
measured data series arises too. In this case, all 
possible trends are the interfering factors and usually 
these ought to be eliminated at the stage of 
preliminary processing of the measurement data. 
Therefore, all dynamic changes in the statistics of a 
process within a considered finite-length realization 
appear to be averaged. This, in turn, imposes 
increased demands on the selection of the length of 
realization and time of averaging in analyzing specific 
data. 

The spatial inhomogeneity and unsteady 
character are most pronounced in the study of the 
structure of wind velocity fields in the region of 
scales, corresponding to the energy range of the 
turbulence spectrum. At the same time, numerous 
experimental data obtained in the past decades 
(including images taken from space) show that large-
scale ordered eddies, referred to as coherent 
structures, play an important role in the natural and 

simulated turbulent flows. The examples of such 
eddies are, for instance, “cloud streets” in the 
atmosphere, “Langmuir circulations” in seas and 
lakes, periodic large eddies in jets of jet engines, etc.  
 It turned out that coherent structures are the 
main energy carriers in turbulent flows. They 
considerably affect the formation of all characteristics 
of a flow, in particular, the heat and mass exchange, 
transport of pollutants and momentum, sound 
excitation, etc. Coherent structures may be formed, 
under certain conditions, in turbulent flows at the 
expense of the flow energy (energy-carrying eddies), 
and then collapse, dissipating into chaotic motion. 
They also may, on the contrary, consume the energy 
of the turbulent motion in the flow for their 
existence (dissipative eddies).2–6 These facts are 
beyond the common ideas about the absolute chaotic 
nature of turbulent motions and the cascade 
mechanism of the energy transfer from large scales to 
small scales. It becomes necessary to search for new 
approaches and methods for interpreting experimental 
results. 

Recently, the method of wavelet transform has 
found wide application to analysis of experimental 
data on atmospheric processes.7 This method allows 
random signals to be presented in the form of a 
function of two variables: time (shift) and time scale 
(period or frequency) that enables one to study then 
local properties of their frequency–time structure. 
The wavelet analysis is used in studying unsteady 
atmospheric processes8 and allows one to identify and 
analyze coherent structures in the atmosphere,9–11 as 
well as to reveal the periodicity in long-term series of 
observation data on atmospheric parameters.12 Along 
with the traditional application of wavelet transforms, 
new methods of their application to analysis of 
geophysical data are now being developed.11,12 

In this paper, we use the wavelet-based method 
of investigation of local characteristics of random 
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processes proposed in Ref. 12 to analyze data on 
wind velocity in the atmosphere, obtained with the 
use of a coherent Doppler lidar.13 This method 
permits the joint analysis of many-point observation 
series and separation of regular components with the 
time and scale localization. 

1. Basic relationships 

The wavelet transform of the function f(t) is 
defined as its integral transformation with the  
kernel Φ 
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where Φ(ξ) is the wavelet function. In this paper, we 
used the wavelet of the “Mexican hat” type7: 

 2 2( ) ( 1)exp( /2),Φ ξ = ξ − −ξ  

which allows maxima and minima in the signal to be 
isolated quite well. 

We define some characteristics of the relation 
between two signals in terms of their wavelet 
transforms.12 Let f1 and f2 be two signals, while Ψ1 
and Ψ2 be their wavelet transforms on some scale s, 
and, correspondingly, i

′τ  and j′′τ  are points of local 

extremums of Ψ1 and Ψ2. The local phase shift of 
these signals on the scale s for the local extreme ,i

′τ  

according to Ref. 12, is  
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j
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where ( /2, /2).j i is s′′ ′ ′τ ∈ τ − τ +  

For each extremum i
′τ  of the function Ψ1, the 

closest extremum (maximum or minimum) point of 
the function Ψ2 is sought within the s-wide vicinity 
near the point i

′τ . The local phase shift for zeros of 
the wavelet transform is determined in similarly. This 
definition allows the phases of oscillations of the scale 
s in the vicinity of maximum deviations to be 
compared and the phase changes at intermediate 
points to be ignored. 

The local coherence function is determined as a 
correlation coefficient of the wavelet transforms of 
this couple of signals on the scale s for the points, at 
which the function l1,2(τ, s) is defined, by the following 
equation12: 
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The definitions introduced give the possibility of 
estimating the phase characteristics and coherence of 
the signals studied not only for periodic components, 

but also for individual perturbations of the 
corresponding scale s. 

2. Case study example 

The main qualitative features of the analysis 
method used can be demonstrated with two test 
signals f1 and f2, taken as an example. Each of these 
signals consists of a sum of three frequency-separated 
sinusoidal signals of a unit amplitude. The initial 
phase for each component of the signals was specified 
in the interval from −π to +π with the aid of a 
random number generator. An example of realization 
of such signals is shown in Fig. 1.  

Figure 2 depicts the wavelet transforms (1) of 
these signals. In the plot, the minimum values of the 
wavelet coefficients are shown by white color, the 
maximum ones are shown by black, and all the 
intermediate values are given in the gray scale.  

In the frequency–time plane of the plots, one 
can see the positions of maxima and minima for each 
of the three components of the signals, corresponding 
to certain frequencies. The relative positions of the 
extremums of the functions f1 and f2 on the time axis 
correspond to the initial phase shifts of the signal 
components. 

Figure 3 shows the local phase shifts, found 
according to Eq. (2) in the entire frequency–time 
plane for the given pair of wavelet transforms. On 
the scale (frequency) axis, the positions of the 
constant values of local shifts are concentrated 
around three frequencies, corresponding to the three 
components of the test signals f1 and f2. This is 
clearly seen in Fig. 3b, which shows only the shifts 
at these three scales. For each of the three frequency 
components, the local shift remains nearly constant 
all over the time axis. 

Figure 4 depicts the local shifts of the wavelet 
coefficients, measured in units of the discretization 
step on the sales, corresponding to the frequencies of 
the components of the test signals. The time 
deviations occurring in the shift values can be 
attributed to the calculation errors, caused by the fact 
that the positions of local extremums (2) and points 
of intersecting zero are determined accurate to one 
step of the signal discretization. Therefore, in the 
central part of the time axis, these errors are larger 
for the high-frequency component than for the low-
frequency one. At the origin and at the end of the 
time axis, the accuracy of calculations is also 
influenced by the edge effects, inherent in wavelet 
transforms at the realization domain boundaries. 
These distortions are more pronounced for the low-
frequency component of the signal. 

Figure 5a shows the values of the local 
coherence, calculated by Eq. (3) without the local 
adjustment of the phases of the signal components 

(shifts 1,2( , ) 0il s′τ = ). It can be seen that the local 

coherence function of the two test signals in the time–
scale plane has a periodic structure, characteristic of 
signals  with  the  constant (in time) phase difference,  
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Time readouts 

Fig. 1. Signals f1 and f2. 

 

 
a 

 
Time readouts 

b 

Fig. 2. Wavelet transforms of the signals f1 (a) and f2 (b). 
 

 
a 

 
Time readouts 

b 

Fig. 3. Local phase shifts of the wavelet transforms of the signals f1 and f2: (a) for any scale; (b) for the scales, corresponding 
to the frequency components of the test signals. 
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Time readouts 

Fig. 4. Local shifts of the wavelet coefficients at the frequencies of the components of the test signals. 
 

 
a 

 
Time readouts 

b 

Fig. 5. Local coherence of the wavelet transforms of the test signals without (a) and with (b) adjustment of phases. 

 

 

that is, for coherent signals. Unlike the Fourier 
transform, the wavelet transform of a harmonic 
signal is not a delta function, but occupies some band 
of the scales s, whose width is determined by the 
frequency resolution of the transform. In the wavelet 
plane, the bands, occupied by the frequency 
components of the signal, partly overlap. Because of 
the overlap, the local coherence calculated by Eq. (3) 
on a specific scale takes the periodically changing 
values depending on time. To find the ranges of the 
scales with high coherence, it is necessary to carry 
out local adjustment of the phases of oscillations on 
some scale or a range of scales. 

Figure 5b shows the frequency–time structure of 
the local coherence, calculated with the local phase 
adjustment near the initial frequencies of the 
components of the test signals. For this purpose, the 
local shifts calculated previously (see Fig. 3a) were 
used in Eq. (3). In contrast to Fig. 5a, in Fig. 5b we 
can see three ranges of scales with the high coherence 
on the whole time axis, and just these ranges are the 
darkest ranges, in which the coherence values are 
close to unity. 

Thus, from the local coherence function of the 
wavelet transforms of the signals with the 
compensation for their phase shifts, it is possible to 
reveal the regular components of these signals and to 
determine their location. 

3. Application to processing 
experimental data 

Consider the application of the method to 
processing atmospheric signals. Figure 6 shows the 
wind velocity V1 and V2 measured with a Doppler 
lidar at a distance of 650 and 1000 m from the lidar 
along the direction of propagation of the sounding 
beam.13 Actually, we consider the realizations of the 
wind velocity measured at the points, separated by 
350 m in the vertical plane along the direction  
at some scanning angle.13 The realizations V1 and  
V2 consist of 256 points with the interval of 11.5 s 
between the readouts. That is, the signal 
discretization frequency is fd = 0.0869 Hz, and the 
duration of the realization is 49 min. The wavelet 
transforms of the signals V1 and V2 are shown  
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in Fig. 7. The maximum frequency corresponds to 
fd/2. 

The local phase shift was calculated by Eq. (2) 
accurate to one signal discretization step. Since 
fd = 0.0869 Hz, the relative time shift between the 
phases of the spectral components of the two signals 
is determined accurate to Δl = l/fd = 11.5 s. The error 
in determination of the phase shift with respect to the 
period of the spectral component for the high-
frequency components of the signals, as was mentioned 
above, appears to be larger than for the low-frequency 
ones. In Fig. 8, for the component with the shortest 
period Tmin = 2/fd, the maximum value of the relative 
error of determination of the local phase shift is 
Δl/Tmin = 50%. Correspondingly, for the component 
with the longest period, present in the range under 
consideration, the error is Δl/Tmin = 0.5%. Figure 8 

shows the distribution of the local phase shifts l1,2. 
The white color corresponds to the maximum negative 
values of the local shifts, and the black color 
corresponds to the maximum positive shifts.  

Figure 9a shows the local coherence function of 
the wavelet transforms of the signals V1 and V2 
without phase adjustment (with zero shifts). 

Except for the upper part of Fig. 9a, where the 
synchronism of the low-frequency trend in both of 
the signals manifests itself on the scales, comparable 
with the length of realization, the dark areas (with 
the high coherence) occupy only small parts in the 
scale –time coordinates and are separated by white 
(noncoherent) bars. In the central part of the 
considered range of scales, one fails to see extended 
(in time) areas with high coherence. 

Figure 9b shows the coherence function 
calculated by Eq. (3) with the use of the local 
adjustment of the signal phases, that is, with the use 
of the shifts shown in Fig. 8. We can see that after 
the local adjustment of the phases the wavelet 
transforms in the scale range from 60 to 180 s in the 
vicinity of the corresponding points i

′τ  and 

1,2( , )i il s′ ′τ ± τ  appear to be coherent almost through 

the entire time period under consideration. That is, 
the local coherence function takes the limiting values 
of 1 and 0 at a rather large part of the frequency–
time plane, colored in black for Ñoh1,2(τ, s; l1,2) = 1 and 
white for Ñoh1,2(τ, s; l1,2) = 0. The value of the local 
coherence as applied to the wind velocity can be 
treated as a measure of stability of the velocity eddy.2  

 

 
Time readouts 

Fig. 6. Wind velocity realizations V1 and V2. 
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Time readouts 

b 
Fig. 7. Wavelet transforms of the signals V1 (a) and V2 (b). 
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Time readouts 

Fig. 8. Local phase shifts of the signals V1 and V2. 
 

 

a 

 
Time readouts 

b 

Fig. 9. Local coherence of the wavelet transforms of the signals V1 and V2 without (a) and with (b) phase adjustment. 

 

This means that, once the local phase shifts are 
leveled, the velocity eddies of the corresponding 
scales, characterized by the high coherence, evolve 
within the time intervals synchronously with the 
constant (in time) phase difference, that is, they are 
coherent structures. 

If we are interested in the behavior of the 
velocity eddies of a certain scale, then it is possible, 
selecting the corresponding scales in the plot of the 
local shifts and ignoring the others (that is, carrying 
out the local adjustment of the phase to the scales of 
the eddies), to determine the frequency–time 
intervals of coherence of these eddies using Eq. (3). 
 Thus, analyzing the space–time series of the 
wind velocity, measured at different altitudes 
(distances), it is possible to reveal regular 
components with the coordinated behavior, to 
estimate their scales, and to determine their time and 
frequency location. The procedure described can be 
used, obviously, not only for analyzing signals 
periodic in time, but also for estimating the period 
and velocity of propagation of individual wind 

perturbations. The approach proposed may appear 
useful when studying unsteady random processes, in 
particular, to reveal and investigate the dynamics of 
coherent formations in the atmosphere. 
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