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An analytical formula is derived for variance of the extrapolation error allowing a computation 

of the spatial prognosis error of some meteoparameter at any initial conditions and any measurement 
interval. For the analysis, the filtering algorithm is chosen, which uses a spatial polynomial of the 
second order as the observational model. 

 
 

Earlier, we have proposed the technique for 
synthesis of algorithms of spatial extrapolation of 
meteorological parameters on the basis of the Kalman 
filtering.1,2 Accuracy of all algorithms was studied 
using actual aerologic data. The final estimation error 
depended on conditions, size, and characteristics of 
the particular measurement sample. There appears a 
rightful question about potential capabilities of the 
algorithms and temporal behavior of extrapolation 
errors as the data enter. In this paper we consider the 
analytical formula for the variance of the extrapolation 
error, which allows one to calculate the error of 
spatial forecast of a meteorological parameter for any 
measurement period and different initial conditions. 
The filtering algorithm was selected for the analysis, 
using the spatial polynomial of the second order as 
an observation model. 

 

Statement of the problem 
 

Let the meteorological parameter ξi(t) at the ith 
point of the given plane at the moment t be 
determined by the second order polynomial 

 ξi(t) = X1(t) + X2(t)xi + X3(t)yi + 

 + X4(t)xi yi + X5(t)xi
2
 + X6(t)yi

2
, (1) 

where xi and yi are the Cartesian coordinates of the 
measurement stations, X1(t) – X6(t) are unknown 
coefficients determining the meteorological parameter 
value at each moment for any point within the limits 
of a mesoscale testing area. Unknown coefficients of 
the polynomial are estimated by means of the Kalman 
filter discrete variant. The state vector at the discrete 
moments tk has the form 

 X(k) = |Õ1(k), Õ2(k), Õ3(k), Õ4(k), Õ5(k), Õ6(k)|Ò. (2) 

The symbol T means here a transposition. The dynamics 
of variation of the vector components (2) can be 

described by a system of difference equations of the 
form (l = 1, …, 6) 

 + = + ω( 1) ( ) ( ),l l lX k X k k  (3) 

where 

 Ω =│ω1(k) ω2(k) ω3(k) ω4(k) ω5(k) ω6(k)│Ò 

are the random perturbations of the system (generating 
noises of states). The measurement model is presented 
in the form of an additive mixture of the true value  
of the meteorological parameter ξi(k) and the 

measurement error εi(k): 

 Yi(k) = ξi(k) + εi(k). (4) 

In terms of variables of the state (2), the 
measurement model (4) can be rewritten as2 

 Yi(k) = X1(k) + X2(k)xi + X3(k)yi + 

 + X4(k)xi yi + X5(k)xi
2
 + X6(k)yi

2
 + εi(k).  (5) 

Equations (3) and (5) completely determine the 
structure of the linear Kalman filter providing the 
estimation of the polynomial (1) coefficients with a 
minimal rms error. The algorithm of spatial 
extrapolation into the preset point j of the testing 
area has the form 

 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ,

1 2 3

2 2

4 5 6

j j j

j j j j

Y k X k X k x X k y

X k x y X k x X k y

= + + +

+ + +

 
(6)

 

where ˆ ˆ( ), ( )i jX k Y k  are the estimate of the state 

vector and the extrapolated value of the meteorological 
parameter at the moment k; xj, yj are coordinates  
of the extrapolation point. The variance of the  
error in estimating (spatial extrapolation) of the 

meteorological variable Yj(k) at each step of the 
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forecast averaged over the ensemble of realizations is 
determined by the formula 

 { }ˆ( ) ( ) – ( ) ,⎡ ⎤=
⎣ ⎦

2

EY j jD k Y k Y k  (7) 

where E is the operator of mathematical expectation, 
Yj(k) is the true value of the forecasted variable; 
ˆ ( )jY k  is the estimated value of the forecasted variable. 

Substituting Eq. (6) to Eq. (7), one can obtain the 
dependence of the variance of the error in estimating 
Yj(k) on the errors of estimating the coefficients of 
the polynomials Õi(k): 

 DY(t) = D11(t) + xj
2
D22(t) + yj

2
D33(t) + xj

2
yj

2
D44(t) + 

 + xj
4
D55(t) + yj

4
D66(t) + 2xjD12(t) + 2yjD13(t) + 

 + xjyjD14(t) + 2xj
2
D15(t) + 2yj

2
D16(t) + 2xjyjD23(t) + 

 + 2xj
2
yjD24(t) + 2xj

3
D25(t) + 2xjyj

2
D26(t) + 

 + 2xjyj
2
D34(t) + 2xj

2
yjD35(t) + 2yj

3
D36(t) +  

 + 2xj
3
yjD45(t) + 2xjyj

3
D46(t) + 2xj

2
yj

2
D56(t),  (8) 

where Dlm(k) are the elements of the covariation matrix 

of the errors in estimating the coefficients D(tk) (2). 
 

Technique for solving the problem 
 

The covariation matrix of errors in estimating the 
elements of the state vector for the linear Kalman 
filter can be calculated a priori by means of the matrix 
Riccati differential equation3,4: 

 

T T

T –1

d
( ) ( ) ( ) ( ) ( ) ( ) ( ) –

d

– ( ) ( ) ( ) ( ) ( ),

t t t t t t t
t

t t t t t
ε

= + +

D
F D D F G R G

D H R H D

Ω

 

(9)

 

where F(t) = 0 is the transitional matrix of states, 
G(t) is the unit transitional matrix of state noises 
(diag G(t) = │1 1 1 1 1 1│); RΩ(t) = 0 is the 
covariation matrix of state noises under condition 
that the noises are absent (3); 

 H =

2 2

11 11 11 11 11 11

2 2

22 22 22 22 22 22

2 2

33 33 33 33 33 33

2 2

44 44 44 44 44 44

2 2

55 55 55 55 55 55

2 2

66 66 66 66 66 66

1 ( ) ( )

1 ( ) ( )

1 ( ) ( )

1 ( ) ( )

1 ( ) ( )

1 ( ) ( )

x y x y x y

x y x y x y

x y x y x y

x y x y x y

x y x y x y

x y x y x y

⋅

⋅

⋅

⋅

⋅

⋅

 

is the transitional matrix of the measurements, R
ε
(t) 

is the covariation matrix of the observation noises 

(diag R
ε
(t) = 2 2 2 2

ε ε ε ε
σ σ σ σ ). 

To solve Eq. (9), it is necessary to set the initial 
value of the matrix of the error variances in estimating 
D(0), which is equal to the matrix of variances of the 

estimated process X(t) at the moment t = 0. The 
value of this matrix at synthesis of the algorithms is 
set based on a priori data. One of the ways of 
analytical solution of Eq. (9) described in detail in 
Ref. 4 is used in this paper. The principle of solution 
is based on replacing Eq. (9) by the system of linear 
differential equations with the matrix 2n×2n (where 
n is the dimension of the state vector). The closed 
solution of the Riccati equation in the matrix form is 
presented below: 

 11 12( ) ( ) (0) ( )t t t= + ×⎡ ⎤⎣ ⎦D C D C  

 
–1

21 22( ) (0) ( ) .t t× +⎡ ⎤⎣ ⎦C D C  (10) 

The following formula is used to determine the block 
matrix C(t) 

 Ñ(t) = 11 12

21 22

( ) ( )

( ) ( )

t t

t t

C C

C C
 = ‡–1{[sI – A]–1}, (11) 

where ‡–1 is the operation of the inverse Laplace 
transform; I is the unit matrix 2n×2n, s is the 
Laplace transform parameter 

 
T –1 T

–

Ω

ε

=

T
F GR G

A
H R H F

 

is the auxiliary block matrix. 
The block matrix A for the models (3) and (5) 

has the following form: 

 
T –1

0 0

0
ε

=

⋅ ⋅

A
H R H

. (12) 

 

Results 
 

The rms error in extrapolation σ = ( )Y YD t  was 

investigated for three configurations of the testing 
area (Fig. 1a) including the stations: (1) Bologoe – 
Sukhinichi – Smolensk – Ryazan’ – Moscow;  
(2) Smolensk – Sukhinichi – Kursk – Ryazan’ – 
Moscow; (3) Sukhinichi – Kursk – Ryazan’ – 
Nizhnii Novgorod – Moscow. 

The initial covariation matrix of errors was set 
in the diagonal form: D(0) = σ2I, where I is the unit 
matrix of the dimension (n×n). The investigation 
period was 5 days with the rate of arrival of the 
measurements equal to 12 hours.1 Results of 
investigations of the initial conditions D(0) effect on 
σY (at σ = 1, 2, 3 and σ

ε
 = 1) are shown in Fig. 1b 

for configuration 1. Results of studying the σY 
variation for different stations and testing area 
configurations (at σ = 2 and σ

ε
 = 1) are presented in 

Fig. 1c. The plots of σY variations for all considered 
configurations with the point of extrapolation at the 
station Moscow are shown in Fig. 1d. The performed 
study of the effect of the σ

ε
 measurement error on σY 

has shown its insignificance in the value range of  
σ
ε
 = 0.5; 1; 1.5; 2 and σ = 1; 1.5; 2. All calculations 

used the software complex Mathcad 2001. 
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Fig. 1. The diagram of configurations of the testing area (a), as well as the plots of the temporal behavior of rms errors in 
estimating the meteorological parameter: (b) for the station Moscow (testing area 1) at σ = 1, 2, 3 and σε = 1; (c) for the 
stations Bologoe, Ryazan’, Sukhinichi, Smolensk (testing area 1); for the station Kursk (testing area 2), for the station Nizhnii 
Novgorod (testing area 3); (d) for the station Moscow at σε = 1 and σ = 2 for three configurations of the testing area (1, 2, 3). 
 

 

Conclusions 
 

1) The obtained results allow one to estimate the 
potential accuracy of extrapolation at different values 
of measurement errors. 

2) The value of the initial covariation matrix σ 
mostly affects the filter convergence rate, the minimum 
σY is reached at σ = 1.0. 

3) The study of the effect of the error in measuring 
σ
ε
 on σY did not reveal its significance in the value 

range of σ
ε
 = 0.5; 1; 1.5; 2 and σ = 1; 1.5; 2. 

4) The minimum error σY is obtained for the stations 
Moscow and Sukhinichi situated inside the selected 

testing areas, that well agrees with the data from Ref. 5. 
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