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The system of evolutionary differential equations describing the propagation of radiation in 

optical bundles with the allowance for the coefficients of coupling between the fibers is obtained. It 
is shown that, in optical bundles consisting of single-mode fiber elements, the field amplitude in 
bundle cross section satisfies the parabolic (diffusion) or Helmholtz equation, in which the diffusion 
coefficient is determined by the distance between the centers of fiber cores and by the overlap 
integral of interacting modes. For few-mode and multimode fiber channels, the system of equations 
can be solved by the method of splitting into physical processes. The problem of the influence of 
adiabatic (conic) increase of the fiber core radius on the contrast in the spatially unsteady regime is 
considered. Based on the model of pairwise interaction of the fibers, the parameters of the transfer 
function in optical bundles are calculated from the analysis of cross talk. The influence of 
polarization corrections to propagation constants of simple fiber on the parameters of the transfer 
function is estimated from the results of numerical calculations. 

 

 

Introduction 
 
The progress in fiber optics became possible, in 

the first turn, due to the development of high-purity 
technologies of fabrication of fibers with low optical 
losses based on fused silica. The promising field of 
application of fibers, in particular of optical bundles, 
is presented by sensors of various physical fields, 
such as the electric and magnetic fields, mechanical 
displacements, pressure, temperature, etc. A wide 
variety of materials allows the physical parameters of 
fibers to be varied in a wide range and thus the 
needed characteristics of fiber sensors to be obtained. 
  Now the need in sensors grows fast in connection 
with the rapid development of automated control 
systems, implementation of new technological processes, 
transition to flexible manufacturing systems, growing 
safety requirements to dangerous industries. Fiber-
optics sensors and devices based on fibers, in particular, 
optical bundles meet these requirements best of all. 
In the case of a multifiber bundle, each optical fiber 
has a diameter of 14–30 µm, and the density of image 
elements ranges from 1000 to 10 000 fibers. Such light 

guides allow images to be transferred to a distance of 5 
to 10 m.1 Another type of optical bundles is presented 
by multicore light guides, in which the core diameter 
is 4 to 12 µm, and the image density is more than 
10 000 light-guiding cores. Such bundles allow images 
to be transferred to a distance of 100 m.2 

The intense investigations connected with the 
study of the transfer properties of optical bundles 
and the optimization of their parameters are carried 
out nowadays. For example, in Ref. 2 Nakamura and 
Kitayama study the image skew in an optical bundle 
and the influence of the bundle bend on the dispersion 

of modes of different light-guiding channels. It is 
also shown there that to provide for the transfer rate 
of 1Gb/s/channel at a length of 100 m, the 
parameters of all cores making up the bundle should 
be identical during the bundle production. In Ref. 3, 
the theory is proposed for the determination of the 
transfer function of an optical bundle. The approach 
is based on the assumption of the presence of strong 
cross talk. The transfer function is determined with 
the use of the Fourier–Bessel transform. The transfer 
function of the cross talk of light-guiding channels is 
studied experimentally in Ref. 4. 

The connection between light-guiding channels 
in optical bundles is determined by the optical cross 
talk.5 The cross talk can be described in two ways: 
1) to calculate the power exchange between the light-
guiding channels, the modes of the complex 
waveguide are determined directly, and the 
interaction manifests itself in the interference 
between modes of the complex waveguide; 2) the 
modes of each individual light guide are determined 
separately, and the cross talk is characterized by the 
coupling coefficient. 

In this paper, the system of equations is derived 
for the amplitudes of the modes of individual light 
guides in optical bundles. It is shown that, using the 
method of splitting into physical processes, this 
system of equations for the amplitudes of identical 
modes can be reduced to economical splitting schemes 
and solved numerically. In the limit of large number 
of single-mode light-guiding channels, it is shown 
that the process of energy exchange between the 
light-guiding elements is described by the diffusion 
equation, in which the “diffusion coefficient” is 
determined by the value of the cross talk. 
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1. Derivation of the system  
of difference-operator evolutionary 

equations for optical bundles  
 
Consider the area AEDF (see Fig. 1), filled with 

simple light guides with the diameter of the light-
guiding element d = 2ρ (ρ is the core radius) and the 
shield diameter D = 3d. In this case, the light-
guiding channels are few-mode light guides. Let the 
radius of the circle inscribed into the AEDF 
trapezium is equal to R0. The position of the light-
guiding elements is characterized by the numbers i, 
and j, where 

 = =; .i jx iD y jD  (1) 
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Fig. 1. Arrangement of light-guiding elements with respect 
to the axes AX and AY. 

 

If the field amplitude at the input of the optical 
bundle is 
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then the solution is sought in the form of the sum of 
linear combinations of eigenfunctions ψN,m(õ – iD,  
y – jD) of the modes entered into each light-guiding 
element 

 ,

,,

, ; ,

( , ) ( ) ( – , – ),N m
N mi j

N m i j

x y A z x iD y jDΨ = Ψ∑  (3) 

where, according to Eqs. (2) and (3), 

 ,

,

( 0)N m
i jA z = =

 

 
, ,
( – , – ) ( , )d d .N m N mx iD y jD x y x y∗

= Ψ Φ∫∫  (4) 

For the coefficients 
,

,

N m
i jA  we obtain, from Eq. (3), 

the system of evolutionary equations 

2 ,
, 2 ,

, ,2

N m
i j N m

N m i j

A
A

z

∂
+ β +

∂
( ( ), ,

1,,

,

–1,N m N m
i jN m

N m

i j A
−

Λ +∑
�

�

�

�

�

�

 

 + ( )
− +

Λ +
�

�

�

�

, ,

1, 1,
–1, 1

N m N m
i jN m

i j A ( ), ,

, 1,
, 1

N m N m
i jN m

i j A
+

+Λ +
�

�

�

�

+ 

 ( ) ( ), , , ,

1, 1, 1, ,
1, 1, 1

N m N m N m N m
i j i jN m N m

i j A i j A
+ + −

+Λ + + Λ + − +
� �

� �

� �

� �

 

 ( ) )
−

+Λ − =
�

�

�

�

, ,
, 1,

, 1 0,N m N m
i jN m

i j A  (5) 

where 

 

2 2 2
, ,,

2,

,

( ) ( – )( – )d d
( , ) ;

d d

N m ij ijN mN m

N m
N m

k n n x y
i j

x y

∗

Ψ Ψ

Λ =

Ψ

∫∫
∫∫

r r R
�

�

�

�

 

 = ( , );ij iD jDR  

 

2 2

co cl
2 2

– , 0 – ,
–

0, – .

ij

ij

ij

n n

n n

⎧ ≤ ≤ ρ⎪
= ⎨

> ρ⎪⎩

r R

r R
 

The system of equations obtained can be solved 
with the aid of the method of splitting into physical 

processes,6 according to which the coefficients ,

,

N m
i jA  

in Eq. (5) are calculated by the implicit scheme, 

while the coefficients ,

,

N m
i jA
�

�

 are taken from the 

explicit layer. It is seen from Eq. (5) that this system 
of equations is a system of difference equations with 
a seven-point stencil. 

The difference-operator system of equations of 
hyperbolic type (5) can be written in the form of the 
difference-operator system of equations of parabolic 
type by separating out the fast oscillating part 
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This system of equations can be also solved by 
the method of splitting into physical processes and is 
a system of difference equations with a seven-point 
stencil as well. 

 

2. Derivation of the system  
of evolutionary equations of parabolic 
and hyperbolic type for bundles with 
single-mode light-guiding channels 

 

The system of equations allows unique 
theoretical results to be obtained. Let an optical 
bundle consist of single-mode light-guiding elements. 
In this case, there is only the main mode and, 

correspondingly, one element ,

,

( , ).n m

N m
i jΛ

�

�

 Let 

 ,

,

( , ) ,N m

N m
i jΛ = Λ

�

�

 ,

,
,

,

N m
i j i jA A=

�

�  2 2
, 0.N mβ = β  (8) 

(6)



M.O. Sadykova et al. Vol. 19,  Nos. 2–3 /February–March  2006/ Atmos. Oceanic Opt.  225 
 

 

Then Eq. (5) can be written in the form  
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Equation (9) is a difference-operator equation. 
The expression in parenthesis is an approximation of 
some operator in the nonorthogonal coordinate system 
(see Fig. 1). Let us show that the expression in 
parenthesis can be represented through the difference 
Laplace operator in a two-dimensional domain. 

Let i be plotted along the OX axis and j be 
plotted along the OY axis. The angle between the 
axes is equal to π/3. According to the formulas 
known from differential geometry,7 we obtain that 
the metric tensor gnm, Laplacian Δ, and the determinant 
of the metric tensor in the curvilinear coordinate 
system x and y are: 

 
1 0.5

,
0.5 1

nm
g

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 
1 0.54

,
0.5 13

nm

g
−⎛ ⎞

= ⎜ ⎟
−⎝ ⎠

 g = 1, 

2 2 2

2 2

1 4
.

3 ( ) ( )

nm
n m

gg
x yx x x yg

⎧ ⎫∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞
Δ = = − +⎨ ⎬⎜ ⎟

∂ ∂∂ ∂ ∂ ∂⎝ ⎠ ⎪ ⎪⎩ ⎭
 (10) 

To prove that the expression in the second 
parenthesis is the difference Laplace operator in a 
two-dimensional domain, we superpose the origin of 
the Cartesian system of x1 and x2 coordinates onto 
the point (i, j) and direct the axis x1 through the 
point (i + 1, j + 1) and the axis x2 through the point 
(i – 1, j + 1). With this choice of the Cartesian 
coordinate system, we obtain  
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where À = À(x1, x2); Θ(D4) ∼ D4. 
The coordinates x and y (see Fig. 1) and the 

coordinates of the Cartesian coordinate system are 
related as follows: 
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It follows from Eq. (12) that 
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From Eq. (11) we finally obtain that  
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Using Eqs. (11) and (14), for the expression in 
parenthesis in Eq. (9) we can write: 
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With the allowance made for Eq. (15), the Eq. (9) 
takes the form  
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Thus, the field amplitude in an optical bundle 
consisting of single-mode light-guiding elements 
satisfies the Helmholtz equation (16), that is, the 
steady-state wave equation. 

Correspondingly, with the aid of Eq. (7) for the 
optical bundle consisting of single-mode light-guiding 
elements, the evolutionary equation for the field 
amplitude can be written in the form of the parabolic 
(diffusion) equation: 
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A x y
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z
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Thus, the field amplitude in the optical bundle 
consisting of single-mode fibers can be found from 
the solution of the diffusion equation (18). 

 

3. Methods for solution  
of evolutionary equations 

 
As was noted above, the system of equations for 

the coefficients ,

,

N m
i jA  in the case of an optical bundle 

with few- or multimode light-guiding channels can be 
solved numerically in the general case, for example, 
by the method of splitting into physical processes. 
The situation changes for single-mode light-guiding 
channels. In this case, there is a wide class of 
analytically soluble problems. For the Helmholtz 
equation (16), it is possible to use the method of 
Green’s function, well known in mathematical 
physics and widely used in optics. In this method, 
the solution at a given point can be expressed 
through surface integrals of the initial wave front.8 
In the method of Green’s function itself, there is a 

(13)
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wide class of problems, solved analytically in 
accordance with the theory of light diffraction, for 
example, the light diffraction on the boundary of an 
opaque half-plane. In the case of the parabolic 
equation (18), there is also a wide class of analytically 
solved problems, in particular, those solved by the 
method of Green’s function. 

With modern powerful computers, Eq. (18) can 
be solved numerically based on well developed and 
studied efficient difference schemes. The high stability 
of these schemes allows the corresponding programs 
to be realized quite easily, without the aid from highly 
skilled specialists. In addition, the diffusion equation 
describes the transformation of spherical wave fronts 
in an optical lens. To solve Eq. (18), it is possible to 
use the Fourier transform for the transverse coordinates 
and, using then the inverse Fourier transform, to 
obtain the analytical solution. 

 

4. Method of increasing the image 
contrast and the translational length  

of an optical bundle 
 

The coupling between light-guiding channels in 
optical bundles is determined by the optical cross 
talk.5 The cross talk can be described in two ways. In 
the one case, to calculate the power exchange 
between light-guiding channels, modes of a complex 
waveguide are determined directly, and the interaction 
manifests itself in the interference of individual 
modes of a complex light guide. In the other case, 
the modes of each simple light guide are determined 
separately, and the cross talk is characterized by the 
coupling coefficient. 

In this paper, for optical bundles of various 
design the value of K, being an analog of contrast, is 
determined using the second method from the model 
of the pairwise interaction of simple light guides (light-
guiding elements). Based on the results obtained, a 
method is proposed to increase the image contrast 
and the translational length of an optical bundle due 
to the conical thickening of the light-guide core in 
the domain of the spatially unsteady regime. Let us 
consider the problems formulated. 

In quantum mechanics, there is the theory of 
adiabatic change of parameters of a quantum system 
(Ref. 7, p. 223), according to which in the limit of 
perturbation varying arbitrarily slowly in time the 
probability that a system transits from one state to 
another tends to zero. This means that if a certain 
spectrum of states (for light guides, this means a 
certain number of modes with a certain probability) 
is generated at the initial time, then the spectrum 
composition does not change upon the adiabatic 

perturbation. Since the process of radiation 

propagation in complex light guides is described by a 
scalar wave equation, being essentially the Schrödinger 
equation, in which the longitudinal coordinate z 
plays the role of time, the theorem of adiabatic 
perturbation can be applied to light guides. 

In this paper, it is proposed to use the smooth 
increase of the core radius ρ of a fiber in an optical 
bundle as a function of the longitudinal coordinate z 
as the adiabatic perturbation. According to the theorem 
of adiabatic perturbation, if the cross talk is neglected, 
the fraction of the mode power does not change. The 
fraction of the power transferred at the expense of 
the cross talk is determined both by the length of the 
region of the mode interaction and by the integral of 
overlap of the interacting modes. If the length of the 
region of adiabatic increase of the core radius is 
chosen small, then the cross talk can be neglected, 
because the mode interaction due to the cross talk 
decreases sharply as the core radius increases, as will 
be shown below with the aid of numerical calculations. 
This means that if the core radius is not changed after 

its adiabatic increase, then no power is transferred 
due to the cross talk in the further translation of a 
signal. Let us study this issue in a more detail. 

The contrast in optical bundles is affected both 
by the power transferred due to the cross talk, and 
by the amplitude of the generated mode of a simple 
light guide. Therefore, we first estimate the amplitude 
of different modes in a simple light guide. 

Let the Gaussian amplitude profile be entered 
into the light guide  

 ( )2 2

0 exp – /(2 ) ;r aΨ = Ψ �  

 /100;a N= ρ  N = 35 000; (19) 

 ρ = 3 μm; ≈ ρ�

max
.r N  

The amplitude of the generated mode m ≠ 0 is 
determined by the value of the mth derivative of Ψ 
with respect to the transverse coordinates. The 
derivative of the amplitude of the input field (19) in 
the light guide with respect to the radius is maximum 
at .r a=�  The amplitude of the generated mode m ≠ 0 

is proportional to ( )r aΨ =�  and ∼ (ρ/a)m << 1. 
Correspondingly, the fraction of power of the mode 
ΨN,m is proportional to ∼ (ρ/a)2m = (100/N)m. At N 
= 35 000 for m = 1 we obtain (ρ/a)2m ≈ 3 ⋅ 10–3 (at 
m > 1 this number is even smaller). Therefore, in the 
further consideration for the rather smooth function 
of the input signal Ψ we take into account only the 
modes m = 0, and neglect the modes m ≥ 1. 

The interaction between the light-guiding 

channels in a complex light guide is characterized by 
the parameter K, being an analog of contrast: 

 1 2 1( – )/ ,K W W W=  (20) 

where W1(z) and W2(z) for the modes with m = 0 are 
determined as  
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In Eq. (21), the parameter Λ characterizes the cross 
talk and is calculated as follows: 
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where in Λ21 
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It can be seen that if the wave functions in 

Eq. (23) are normalized to unity, 12 21

∗

Λ = Λ  according 

to Eq. (23). In this case, we have  

 
21 12 .Λ = Λ = Λ  (25) 

The Table presents the values of KN,N for the 
pairwise interaction of the modes N and m = 0, 
calculated according to Eq. (20) (the subscript N of 
KN,N corresponds to the radial quantum number of 
the interacting modes); the period of the complete 
transfer L of the mode power from one core to 
another in a complex two-fiber light guide; Λ from 
Eq. (23) characterizes the cross talk value. For the 
calculations summarized in the Table 

 I III
, , , 0( ) ( ) ( ),N m N m N m=

Ψ = Ψ = Ψr r r  

 II IV
, , , 0( – ) ( – ) ( – ).N m N m N m=

Ψ = Ψ = Ψr R r R r R  

Now assume that the light-guiding elements in 
an optical bundle with the core radius ρ = 2 μm 
transit adiabatically into the light-guiding elements 
with the radius ρ = 3 μm. In this case, according to 
the adiabatic theorem known from quantum 

mechanics,7 the wave function of the main mode 
ΨN=1,m=0 transit adiabatically into the wave function 
of the identical mode, but with a different core. 
According to the Table, in this case the contrast 
between the modes entered (denoted as KN=1,N=1 in 
the Table) is nearly equal to unity, because the 
increase of the optical volume leads to the decrease of 
the cross talk. This improves the characteristics of the 

optical bundle, but an alternative effect, deteriorating 
its characteristics, arises. 

Because of the increase of the optical volume 
due to the increase of the core radius, a new launched 
mode ΨN=2,m=0 arises (see the Table), as a result of 
which, first, the interaction becomes possible between 
the main mode of some core with the new mode 
ΨN=2,m=0 in the neighboring core and, second, strong 
interaction takes place between the amplitudes of the 
modes ΨN=2,m=0 (in the Table, the contrast between 
these launched modes is designated as KN=2,N=2 and is 
equal to 0.68 at ρ = 3 μm). Since the mode N = 2, 
m = 0 is absent in the light guide with ρ = 2 μm 
(this mode is leaking and, therefore, it quickly leaves 
the core), this mode can appear at ρ = 3 μm only as a 
result of the interaction with the main mode due to 
the cross talk. However the numerical calculations 
show that Λ = 1.58 ⋅ 10–8 μm–2 at such an interaction. 

Since 
2 2

1, 0 2, 0–N m N m= = = =

β β  >> Λ, the maximum contrast 

Kmax from Eq. (20) can be written in the form 

 ( )2 2 2 –16
max 1, 0 2, 04 / – 5.6 10 .N m N mK

= = = =
≈ Λ β β ≈ ⋅  

This means that the mode N = 2, m = 0 
virtually is not generated as a result of the interaction 
with the main mode due to the cross talk. This, in its 
turn, means that at the adiabatic thickening of the 
light-guiding channels ρ = 2 μm → ρ = 3 μm the 
characteristics of the optical bundle do not deteriorate. 
It is seen from the calculations presented that, after 
the thickening of the light guide with ρ = 3 μm, the 
character of the radiation propagation is nearly single-
mode (the mode N = 2, m = 0 is absent). 

 

 

Table 

ρ, µm 5 4.5 4 3.2 3.1 3 2 

KN=1,N=1 

Λ, μm–2 
L, m 

1 
1.33 ⋅ 10–17 
3.4 ⋅ 1012 

1 
6.33 ⋅ 10–16 
7.2 ⋅ 1010 

1 
3.19 ⋅ 10–14 
1.4 ⋅ 109 

1 
1.95 ⋅ 10–11 
2.3 ⋅ 106 

1 
4.43 ⋅ 10–11 
1.03 ⋅ 106 

1 
1.01 ⋅ 10–10 
4.5 ⋅ 105 

0.97 
5.03 ⋅ 10–7 

90.4 

KN=2,N=2 

Λ, μm –2 

L, m 

1 
8.37 ⋅ 10–15 
5.4 ⋅ 1015 

1 
6.6 ⋅ 10–13 
6.9 ⋅ 107 

1 
6.27 ⋅ 10–11 
7.3 ⋅ 105 

0.997 
1.71 ⋅ 10–7 
2.7 ⋅ 102 

0.97 
4.98 ⋅ 10–7 

91.5 

0.68 
1.49 ⋅ 10–6 

30.5 

 

KN=3,N=3 

Λ, μm –2 

L, m 

1 
1.27 ⋅ 10–9 
3.6 ⋅ 104 

0.85 
1.07 ⋅ 10–6 

42.7 

     

 

N o t e s .  NA = 100; m = 0; nco = 1.46, ncl = 1.44953; R = 6ρ; z =107 μm; λ = 0.63 μm. 
 

(24)
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It should be noted that, according to the Table, 
similar situation takes place at the adiabatic transition 
ρ = 2 μm → ρ = 3.1 μm, but in this case KN=2,N=2 = 
= 0.97. In the case of ρ = 2 μm → ρ = 3.2 μm, 
KN=2,N=2 = 1, but the launched mode N = 2, m = 1 
appears (this mode also does not deteriorate the 
characteristics of the optical bundle). The conditions, 
analogous to the problem considered above, take 
place at the adiabatic transition ρ = 4.5 μm → ρ = 5 μm 
for the mode N = 3, m = 0. 

 

Conclusions 
 
For the field amplitude and the bundle with 

arbitrary light-guiding channels, the system of 
difference evolutionary equations has been derived, in 
which the core of the light-guiding channels play the 
role of the scheme nodes. It can be easily shown that 
the initial system of difference equations can be 
readily reduced to the system of differential equations 
(Helmholtz or parabolic-type equations), which can 
be solved using other grids, at the investigator’s 
discretion. 

It is shown that the field amplitude in the 
optical bundle, consisting of single-mode light-guiding 
elements, meets either the Helmholtz equation (16) 
or the diffusion equation (18). 

The Helmholtz equation (16) allows the well-
developed method of the Green’s function to be used. 
The diffusion equation (18) is very convenient for 
estimating the contrast. Indeed, first, from the Green’s 
function, for Eq. (18) it is possible to determine the 
rms increase à2 of the initial signal (à2 ∼ z). Second,  
 

for Eq. (18), using the direct and inverse Fourier 
transforms, it is possible to obtain a rather wide class 
of analytical solutions. Third, Eq. (18) can be solved 
numerically based on economical schemes.6 

It is predicted and confirmed by the numerical 
calculations that the adiabatic (conical) increase of 
the core radius of the light-guiding elements in the 
region of the spatially unsteady regime improves the 
contrast. 
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