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An analytical formula is proposed for approximation of resonance functions in the broadening 
theory and for shift of molecular spectral lines. This formula accounts for the trajectory curvatures of 
colliding particles. The equation obtained is a part of a power series in terms of hyperbolic tangents 
th(z). The coefficients of this series are determined for the case of trajectories defined by the 
Lennard–Jones (6–12) intermolecular interaction potential. This paper presents the coefficient values 
for the case of electrostatic interactions. Real parts of the resonance functions needed for calculation 
of broadening coefficients are considered. 

 

Introduction 
The knowledge of line profile parameters, such 

as coefficients of broadening (γ) and shift (δ) by 
pressure of different gases, is necessary in many 
applications, particularly, in reliable choice of 
frequency for sensing molecular impurities in the 
Earth atmosphere. They also contain information on 
the intermolecular interaction potential depending on 
the polarizability, as well as dipole, quadrupole, and 
other moments of colliding molecules.  

To determine δ and γ numerically, it is necessary 
to know the truncation function S(b), which is 
defined in terms of the time perturbation theory and 
depends on matrix elements of the intermolecular 
potential in the basis of vibration-rotation wave 
functions of colliding molecules.1–3 The multiplier 
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entering into the expression for the matrix elements, 
is the Fourier transform of the intermolecular 
potential coefficients. In Eq. (1), l1 and l2 determine 
the order of the tensor of physical quantities of 
colliding molecules 1 and 2, respectively (e.g. 2l-pole 
moments); CLM are spherical harmonics depending on 
the intermolecular distance r (t); t is time; index n 
discriminates interactions of different types but of 
the same tensor nature; and, finally, B[r (t)] 
determines the r (t)-dependence. Commonly, δ and γ 
are calculated in the straight-line trajectory 
approximation, in which,  if molecules interact in the 
x–y-plane, where x(t) = b, y(t) = vt, and z(t) = 0, 
the r (t)-dependence is determined by the relation 
r (t) = (b2 + vt2)1/2, where v is the relative velocity 
of molecules and b is the impact parameter. In this 

approximation, resonance functions have been 
obtained in a series of works,1–7 for example, 

functions f1(k), f2(k), and f3(k) [real parts 
1 2
( )l lf k  of 

resonance functions F(k)] for dipole-dipole 
(l1 = l2 = 1), dipole-quadrupole (l1 = 1, l2 = 2), and 
quadrupole-quadrupole (l1 = l2 = 2) interactions have 
the following forms: 

f1(k) = (k4/4)[K2(k)2 + 4K1(k)2 + 3K0(k)2], 

f2(k) = (k6/64)[K3(k)2
 + 6K2(k)2

 + 15K1(k)2
 + 10K0(k)2], 

f3(k) = (k8/2304)[K4(k)2 + 8K3(k)2 + 28K2(k)2 + 

 + 56K1(k)2 + 35K0(k)2]. (2) 

Here the adiabaticity parameter k = 2πcb(ωii′ + ω22′)/v 
depends on rovibrational (RV) frequencies of 
transitions  ωii′ = Ei – Ei′ and ω22′ = E2 – E2′ (Ei and 
E2 are the RV-levels of molecules 1 and 2); Kn(k) are 
Bessel functions. 

In a number of cases, the straight-line trajectory 
approximation is not correct. For example, in Refs. 8 
and 10, the effect of trajectory bending from a 
straight-line on H2O-level shifts caused by a pressure 
of different buffer gases was estimated. As was 
shown, accounting for trajectory curvatures of colliding 
particles can introduce up to 40% corrections into 
shifts of water vapor absorption levels providing the 
shifts are caused by pressure of rare gases. 

In Ref. 9, a parabolic trajectory model was 
suggested, in which the r(t)-dependence was 
determined as r(t) = (r 

2
c + v′ct

2)1/2. Here rc is the 
distance of the closest approach between molecules; 
v′c is the apparent relative velocity, determined for 
the Lennard–Jones (6–12) potential. The trajectory 
of colliding particles looks like a parabola. Resonance 
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functions, obtained in this approximation, depend on 
rc and v′c; some of them are presented in Ref. 9. 

The most consistent technique for calculation of 
resonance functions f(k), which accounts for 
trajectory curvature of colliding particles determined 
by arbitrary intermolecular interaction potential, was 
reported in Refs. 10 and 11 (see also Ref. 8). In these 
works, a common expression for the real part of 

1 2
( )l lf k  was obtained. For particular values of k, 

these functions can be calculated only numerically. 
 The goal of our work was to obtain analytical 
formulas of resonance functions for different values 
of parameters of the isotropic part of intermolecular 
interaction Lennard–Jones 6–12 potential on the 
base of common expression for resonance functions 
(Refs. 8, 10, 11). Numerous data on the potential 
parameters were obtained for different pairs of 
interacting particles. 

Expansion into series in terms  
of hyperbolic tangents th(z) 

In Refs. 10 and 11, definition of resonance 
functions bases on dynamic equations, which are well 
known from classical mechanics.14 As follows from 
the equations, the time dependence of the distance 
r (t) is determined by the equation 

 2 2 2 1/2d ( )
{2[ ( )]/ / } ,

d

r t
E U r M r

t
= − µ − µ   (3) 

where E = mv2/2 is energy; M = mbvm–1
 = m–1

1  + m–1
2  

is the reduced mass of particles; U(r) is the 
interaction potential. A direct calculation of the 
Fourier transform (1) results in the following 
equation for resonant functions:   
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B is the normalization factor chosen so that  

 fl1l2(k) = 1; kñ = 2πcrc(ωii′ + ω22′)/v;  

parameter rc is determined from solution of equation  

 (b/rc)
2 = 1 – V(rc),  (6) 

and  

 V(r) = 2U(r)/mv2.  

For the Lennard–Jones 6–12 potential 
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Eq. (6) takes the form 

 λ{β12 – β6} + (b*)2β2 – 1 = 0, (8) 
where 

 λ = 8ε/mv2; β = (σ/rc); b
* = b/σ. (9) 

For potential U(r) of an arbitrary type, 
1 2
( )l lf k  

can be calculated only numerically. In special case, 

for U(r) = 0, resonance functions 
1 2
( )l lf k  in the 

form (4) turn to well known Eqs. (2) in the straight-
line trajectory approximation. The shapes of f1(x), 
f2(x), and f3(x) (x ≡ k) are shown in Figs. 1–3, 
respectively. 

 

 
Fig. 1. True (Eq. (2)) (curve 1) (f1(x = 0) = 1) and model 
(Eq. (12)) (curve 2) resonance functions f1(x). 
 

 

 
Fig. 2. True (Eq. (2)) (curve 1) (f2(x = 0) = 1) and model 
(Eq. (12)) (curve 2) resonance function f2(x). 

 

The curves are modeled well by the truncated 
series 

 f 

(m)(x) = a0 + a1th(z) + a2th
2(z) + a3th

3(z), 

 z = α(x – xe), (10) 

where a0, a1, a2, a3, α, and xe are defined from the 
condition of the best agreement (in terms of least-
squares method) between the model curve f 

(m)(x) and 
the exact one f(x) specified by Eqs. (2). As it follows 
from the analysis, a2 and a3 can be correlated and 
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one of them must be fixed, e.g., at zero. This results 
in two equivalent representations of resonant 
functions:  

 f 

(m)(x) = a0 + a1th(z) + a2th
2(z), (11) 

 f 

(m)(x) = a0 + a1th(z) + a3th
3(z). (12) 

 

 
Fig. 3. True (Eq. (2)) (curve 1) (f3(x = 0) = 1) and model 
(Eq. (12)) (curve 2) resonance function f3(x). 
 

In Eq. (11), a0 = – a1 – a2 for f 

(m)(x) and in 
Eq. (12)  a0 = – a1 – a3 for f 

(m)(x). Such selection of 
a0 provides for correct asymptotics of resonance 
functions at large x. Model curves f 

(m)(x) (12) for 
cases of straight-line trajectories are also presented in 
Figs. 1–3. A close agreement between curves, 
specified by the model and exact resonance functions, 
is evident. 

Application of Eqs. (11) and (12) is meaningless 
in cases of straight-line trajectories; however, model 
curves (11) and (12) are turned to be applicable for 
approximation of exact functions of type (4) as well. 
 

Calculation of model function 
parameters 

As is mentioned above, the values of fl1l2(x) for 

potential U(r) of an arbitrary type can be found only 
numerically. We calculated the values of resonance 
functions fl1l2(x) (l1, l2 = 1, 2, and 3) for x between 

0 and 7.9 with a step of 0.1 for 0 ≤ x ≤ 1.4 and 0.5 
for 1.4 ≤ x ≤ 7.9. The isotropic interaction potential 
in form (7) was used; λ = 0.3, 0.7, 1.2, 1.7 and 
β = 0, 0.3, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.98, 
and 1 were taken for calculations. To simulate exact 
functions, the function f(m)(x) from Eq. (12) was 
chosen. Its coefficients depend on λ and β of the 
potential (7), hence 

f
l1l2
 

(m)
(x, λ, β) = a1(λ, β)(th[z(λ, β)] – 1) + 

 + a3(λ, β)(th
3[z(λ, β)] – 1), (13) 

z(λ, β) = α(λ, β)[x – xe(λ, β)]. 

For every fixed pair of λ and β, the coefficients 
in Eq. (13) were defined by the least-squares method 

from the fitting 
1 2

( )
, ( , , )m

l l
f x λ β  (13) to 

1 2,
( , , )l lf x λ β  (4). 

Tables 1–3 present the coefficients of f1
(m), f2

(m), and 
f3

(m),  respectively. 

Table 1. Values of the f1
(m)(x, λ, β) resonance function  

parameters for the Lennard–Jones 6–12 potential 

λ β a1 –a3 α xe 

0 0 0.4228 1.4975 0.6138 0.3682
0.2 0.3 0.4329 1.5031 0.6310 0.4107
0.7 0.3 0.4333 1.5035 0.6311 0.4114
1.2 0.3 0.4336 1.5040 0.6312 0.4121
1.7 0.3 0.4340 1.5044 0.6313 0.4128
0.2 0.5 0.4358 1.5067 0.6317 0.4162
0.7 0.5 0.4435 1.5165 0.6337 0.4303
1.2 0.5 0.4514 1.5265 0.6357 0.4445
1.7 0.5 0.4595 1.5370 0.6377 0.4587
0.2 0.7 0.4518 1.5255 0.6356 0.4459
0.7 0.7 0.5032 1.5899 0.6482 0.5357
1.2 0.7 0.5618 1.6678 0.6626 0.6277
1.7 0.7 0.6317 1.7636 0.6796 0.7231
0.2 0.75 0.4578 1.5310 0.6368 0.4578
0.7 0.75 0.5259 1.6140 0.6535 0.5780
1.2 0.75 0.6075 1.7207 0.6737 0.7022
1.7 0.75 0.7148 1.8643 0.6996 0.8325
0.2 0.8 0.4613 1.5311 0.6374 0.4674
0.7 0.8 0.5378 1.6161 0.6562 0.6113
1.2 0.8 0.6310 1.7302 0.6802 0.7596
1.7 0.8 0.7621 1.8943 0.7124 0.9125
0.2 0.85 0.4577 1.5173 0.6356 0.4665
0.7 0.85 0.5180 1.5608 0.6500 0.6078
1.2 0.85 0.5847 1.6213 0.6693 0.7509
1.7 0.85 0.6727 1.7112 0.6952 0.8938
0.2 0.9 0.4392 1.4764 0.6291 0.4418
0.7 0.9 0.4496 1.4192 0.6279 0.5257
1.2 0.9 0.4574 1.3749 0.6312 0.6155
1.7 0.9 0.4676 1.3444 0.6388 0.7091
0.2 0.95 0.3996 1.3969 0.6144 0.3695
0.7 0.95 0.3613 1.2265 0.5851 0.2989
1.2 0.95 0.3464 1.1194 0.5659 0.2591
1.7 0.95 0.3370 1.0411 0.5528 0.2409
0.2 1.0 0.3492 1.2886 0.5877 0.2092
0.7 1.0 0.4632 1.1875 0.5192 –0.2645
1.2 1.0 1.0471 1.4514 0.4739 –0.8032
1.7 1.0 3.0252 2.4069 0.4402 –1.4944

 

Figures 4 and 5 show β-dependences of a1(λ, β) 
and a3(λ, β) at different λ for f2 

(m) responsible for the 
dipole-quadrupole interaction. 
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Fig. 4. Dependence of a1(λ, β) of the model resonance 
function f2

(m) on λ and β (Eq. (9)). 
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Table 2. Values of the f2
(m)(x, λ, β) resonance function  

parameters for the Lennard–Jones 6–12 potential 

λ β a1 –a3 α xe 

0 0 0.5883 1.7237 0.4858 0.9507
0.2 0.3 0.6092 1.7417 0.4912 0.9772
0.7 0.3 0.6098 1.7424 0.4912 0.9779
1.2 0.3 0.6104 1.7431 0.4913 0.9785
1.7 0.3 0.6109 1.7438 0.4913 0.9792
0.2 0.5 0.6135 1.7472 0.4914 0.9824
0.7 0.5 0.6249 1.7617 0.4921 0.9959
1.2 0.5 0.6364 1.7765 0.4928 1.0095
1.7 0.5 0.6480 1.7916 0.4934 1.0231
0.2 0.7 0.6364 1.7747 0.4925 1.0113
0.7 0.7 0.7074 1.8645 0.4959 1.0974
1.2 0.7 0.7836 1.9652 0.4989 1.1840
1.7 0.7 0.8662 2.0788 0.5013 1.2705
0.2 0.75 0.6442 1.7825 0.4927 1.0230
0.7 0.75 0.7357 1.8948 0.4963 1.1383
1.2 0.75 0.8344 2.0238 0.4990 1.2530
1.7 0.75 0.9418 2.1726 0.4997 1.3642
0.2 0.8 0.6479 1.7822 0.4923 1.0327
0.7 0.8 0.7463 1.8929 0.4946 1.1709
1.2 0.8 0.8488 2.0180 0.4954 1.3050
1.7 0.8 0.9543 2.1588 0.4924 1.4281
0.2 0.85 0.6396 1.7614 0.4906 1.0335
0.7 0.85 0.7106 1.8126 0.4889 1.1716
1.2 0.85 0.7762 1.8666 0.4862 1.3019
1.7 0.85 0.8361 1.9222 0.4808 1.4188
0.2 0.9 0.6069 1.7005 0.4863 1.0128
0.7 0.9 0.6016 1.6131 0.4761 1.1023
1.2 0.9 0.5970 1.5427 0.4677 1.1904
1.7 0.9 0.5936 1.4856 0.4605 1.2751
0.2 0.95 0.5358 1.5787 0.4778 0.9499
0.7 0.95 0.4274 1.3135 0.4521 0.9074
1.2 0.95 0.3685 1.1485 0.4333 0.8862
1.7 0.95 0.3315 1.0331 0.4187 0.8788
0.2 1.0 0.4202 1.3903 0.4624 0.8128
0.7 1.0 0.2490 1.0154 0.4120 0.4653
1.2 1.0 0.2316 0.8820 0.3759 0.1131
1.7 1.0 0.2996 0.8538 0.3478 –0.2763

 

Table 3. Values of the f3 
(m)(x, λ, β)  

resonance function parameters for the  
Lennard–Jones 6–12 potential 

λ β a1 –a3 α xe 

0 0 0.7540 1.9291 0.3923 1.4380 
0.2 0.3 0.7823 1.9613 0.3960 1.4642 
0.7 0.3 0.7829 1.9620 0.3960 1.4649 
1.2 0.3 0.7835 1.9628 0.3959 1.4655 
1.7 0.3 0.7841 1.9636 0.3960 1.4662 
0.2 0.5 0.7696 1.9482 0.3938 1.4534 
0.7 0.5 0.7820 1.9645 0.3939 1.4673 
1.2 0.5 0.7944 1.9810 0.3939 1.4812 
1.7 0.5 0.8070 1.9979 0.3939 1.4951 
0.2 0.7 0.7939 1.9786 0.3936 1.4832 

0.7 0.7 0.8687 2.0766 0.3929 1.5709 
1.2 0.7 0.9466 2.1841 0.3915 1.6572 
1.7 0.7 1.0280 2.3029 0.3893 1.7416 
0.2 0.8 0.8210 2.0033 0.3945 1.5222 
0.7 0.8 0.9157 2.1144 0.3900 1.6628 
1.2 0.8 1.0080 2.2342 0.3837 1.7954 
1.7 0.8 1.1010 2.3669 0.3758 1.9212 
0.2 0.85 0.7927 1.9587 0.3910 1.5085 
0.7 0.85 0.8541 1.9994 0.3835 1.6527 
1.2 0.85 0.9055 2.0378 0.3751 1.7857 
1.7 0.85 0.9495 2.0757 0.3659 1.9094 
0.2 0.9 0.7523 1.8856 0.3882 1.4902 
0.7 0.9 0.7249 1.7655 0.3755 1.5925 
1.2 0.9 0.7011 1.6673 0.3643 1.6893 
1.7 0.9 0.6803 1.5853 0.3544 1.7809 
0.2 0.95 0.6666 1.7407 0.3829 1.4308 
0.7 0.95 0.5160 1.4126 0.3614 1.4113 
1.2 0.95 0.4308 1.2099 0.3452 1.4106 
1.7 0.95 0.3760 1.0696 0.3323 1.4211 
0.2 1.0 0.5253 1.5138 0.3736 1.2983 
0.7 1.0 0.2726 1.0323 0.3359 0.9956 
1.2 1.0 0.1811 0.8232 0.3080 0.7081 
1.7 1.0 0.1503 0.7145 0.2860 0.4074 
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Fig. 5. Dependence of – a3(λ, β) of the model resonance 
function f2

(m) on λ and β (Eq. (9)). 

Such a dependence is typical for all a1, a3, α, 
and xe of all resonance functions. The correspondence 
of curve shapes (Figs. 4 and 5) to the potential shape 
in use is evident. At that, β = 0 corresponds to the 
straight-line trajectory approximation and βe 
corresponds to the minimum point in the interaction 
potential. 

Average thermal velocity 
approximation 

Note, that λ and β in resonance functions (10)–
(13) are not constants, they depend on the relative 
velocity v and the impact parameter b through 
Eqs. (9), i.e. λ = λ(v, b) and β = β(v, b). Average 
values of λav and βav can be estimated, when using 
the average thermal velocity of molecules as v. In 
this approximation  

 λav = 8ε/(3kBT),  

where kB is the Boltzmann constant and T is 
temperature. It is possible to estimate βav, 
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substituting b in Eq. (8) for b0, obtained as a 
solution of the equation 

 S(b0) = 1. (14) 

The equation is used in the Anderson–Tsao–Curnutte 
theory (ATC)1,2; where the adiabaticity parameter 
k is zero for all virtual transitions. Table 4 presents 
λav and βav for a number of water vapor mixtures 
important for practical use (see also Ref. 8). 
 

Table 4. Parameters λav and βav for H2O collisions with 
different buffer gases (T = 273 K) for the  

Lennard–Jones 6–12 potential  

System ε/kB, K σ, Å b0, Å λav βav 

H2O–H2O 92.0a 3.23a 11.38 0.90 0.28 

H2O–H2S 356.0b 2.72b 11.38 3.48 0.24 

H2O–SO2 152.4 3.76 11.79 1.49 0.32 

H2O–N2 109.4 3.51 4.70 1.07 0.83 

H2O–CO2 132.0 3.86 6.40 1.29 0.62 

H2O–O2 104.3 3.35 3.05 1.02 1.02 

H2O–He 31.54 3.0715 2.05 0.31 1.02 

H2O–Ne 58.86 3.17 2.59 0.58 1.05 

H2O–Ar 107.98 3.496 3.44 1.05 1.00 

H2O–Kr 129.01 3.59 3.78 1.26 0.99 

H2O–Xe 146.65 3.84 4.16 1.43 0.98 
 

N o t e . Values of b0 are taken from Ref. 8, where they 
are obtained as a solution of Eq. (14) with the adiabaticity 
parameter k = 0 for all virtual transitions. The Lennard–
Jones potential parameters, marked by a and b, are taken 
from Ref. 12; the b-case corresponds to the definition of 
parameters from the second virial coefficient. Other 
potential parameters are taken from Ref. 13. 

 

A closeness of β and βe, which characterizes the 
maximal deviation from the straight-line trajectory 
approximation, is seen from Table 4 for all cases 
except for H2O–H2O, H2O–SO2, and, perhaps, 
H2O–CO2 mixtures. Resonance functions f2

(m) and 
f3

(m) were obtained for λav and βav, indicated in 
Table 4 for H2O–N2 and H2O–O2. Figure 6 presents 
f2

(m) responsible for the dipole-quadrupole 
interaction. 

The resonance function f2
(m)(λ = 0, β = 0), 

corresponding to the straight-line trajectory 
approximation, is shown here for comparison. A 
significant difference between the resonance functions 
is evident. 

 

 
Fig. 6. Resonance functions f2

(m) (x, λav, βav) for H2O–N2 (2), 
H2O–O2 (1), and in the straight-line trajectory 
approximation (3). The approximation of the average 
thermal molecule velocity and Eq. (14) were used in 
calculations. 

Extrapolation relationships  
for parameters of resonance functions  

In the ATC technique, β values are defined 
through solution of Eq. (14) separately for each line. 
Therefore, the next step was a development of 
extrapolation relationships for ai(λ, β) (i = 1, 3), 
α(λ, β), and xe(λ, β). As is seen from Figs. 4 and 5, 
these relationships can differ for different intervals of 
β. In our work, we have treated the interval 
0 ≤ β ≤ 0.9 containing β ≈ βe, which corresponds to 
the minimum of molecule interaction potential; this 
minimum determines maximal deviation of resonance 
functions f 

(m)(λ, β) from f2
(m)(λ = 0, β = 0) in the 

straight-line trajectory model. Based on Figs. 4 and 
5, we have chosen the following extrapolation 
formulas: 

 a1(λ, β) = a10 + a1 λλ/ch[a1 β(β – β1e)], 

 a3(λ, β) = a30 + a3 λλ/ch[a3 β(β – β3e)], 

 α(λ, β) = α0 + αλ βλβ
2, 

 xe(λ, β) = xe0 + xλ βλβ
2. (15) 

In Eqs. (15), a10, a30, α0, and xe0 determine the 
resonance functions in the straight-line trajectory 
approximation; a1λ, …, xλβ have been obtained 

through 
1 2

( )
, ( , , )m

l l
f x λ β  fitting to the values of exact 

functions 
1 2,

( , , )l lf x λ β  (Eq. (4)) at different x, λ, and 

β. The obtained parameters are presented in Table 5. 
 

 

Table 5. Parameters of extrapolation formulas (15) for resonance functions 

Function  a10  a1λ a1β β1e α0 αλβ 

f1(x) 0.4228±0.0180 0.1745±0.0286 6.08±0.74 0.994±0.061 0.6138±0.0105 0.0* 

f2(x) 0.5883±0.0500 0.1852±0.0075 7.18±0.63 0.898±0.061 0.4858±0.0530 0.0* 

f3(x) 0.754±0.014 0.2231±0.0132 8.96±0.55 0.8* 0.3923±0.0204 0.0* 

 a30 a3λ a3β β3e xe0 xλβ 

f1(x) –1.4975±0.246 –0.112±0.007 13.26±0.86 0.773±0.004 0.368±0.006 0.315±0.007 
f2(x) –1.724±0.047 –0.174±0.025 12.27±0.71 0.784±0.004 0.951±0.013 0.369±0.007 
f3(x) –1.929±0.125 –0.342±0.026 16.92±0.26 0.763±0.002 1.438±0.032 0.382±0.014 

 

*Fixed fitting parameter. 
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The root-mean-square deviation 

 
⎧ ⎫−⎪ ⎪

= ⎨ ⎬
−⎪ ⎪⎩ ⎭

∑
1/2

( ) 2( )
RMS

( )

I m
ii

i

f f

I L
 

was chosen as the fitting quality factor. Here fi
(m) 

and fi are the values of model and exact resonance 
functions; I = 588 is the total number of values; 
L = 13 is the number of fitted parameters in use. 

RMS is equal to 1.65 ⋅ 10–3 for f1
(m)(x), 2.3 ⋅ 10–3 for 

f2
(m)(x), and 2.6 ⋅ 10–3 for f3

(m)(x). 

Conclusion 

The main results of this work are presented in 
Tables 1–3 and 5. The obtained parameters allow us 
to find the values of f1

(m)(x), f2
(m)(x), and f3

(m)(x) for 
some arbitrary x. As can be seen from Fig. 6, these 
values can differ essentially from those, obtained in 
the straight-line trajectory approximation. 

Application of the developed technique to 
calculations of half-widths and line shifts of 
molecules will be described in the following works. 
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