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A 3D stochastic model of broken cloud geometry is constructed; it is adjusted according to 
satellite or ground-based observations. The model input parameters are an autocorrelation function of 
the cloud indicator field and a distribution of cloud layer thickness. A numerical algorithm is 
constructed based on spectral models of homogeneous random fields and on the method of nonlinear 
transformation of Gaussian functions. The proposed approach to broken clouds modeling is quite 
simple, universal, and makes it possible to reproduce key characteristics of cloud field geometry, 
estimated according to field measurements. 

 

Introduction 
 
Clouds, covering a considerable part of the globe, 

are a significant factor determining the radiative 
transfer processes in the atmosphere. The geometry 
and optical structure of clouds are highly diverse and 
have a pronounced stochastic character. Study of 
influence of stochastic structure of broken clouds on 
characteristics of radiation fields is an urgent problem 
in the context of research in the field of atmospheric 
general circulation, theory of climate, meteorology, 
as well as in solution of many applied problems of 
atmospheric optics. It is noteworthy that, in addition 
to experimental studies, mathematical simulation  
has recently become an efficient tool of investigation. 

History of mathematical modeling and numerical 
algorithms for simulation of stochastic cloud structures 
numbers several decades (see, e.g., Refs. 1–12). Cloud 
models evolve in parallel with the development of 
mathematical theory and calculation facilities, as well 
as simultaneously with the refinement of technical 
capabilities for obtaining experimental data. Whereas 
in first models the clouds were presented as simplest 
geometrical bodies1,2,4 (parallelepipeds, spheres, and 
paraboloids), subsequently modelers had turned to 
using general methods of numerical simulation of 
random processes and fields, enabling one to simulate 
more complicated structures. 

One of the methods of numerical simulation of 
broken clouds was developed in Refs. 13 and 14 
using spectral models of Gaussian random fields and 
nonlinear transformations of Gaussian functions. This 
method allows one to simulate quite diverse stochastic 
cloud configurations. The corresponding cloud models 
have been named Gaussian. They were used to study 
radiative transfer processes in cumulus clouds by 
Monte Carlo method.14–17 One of the disadvantages 
of the Gaussian models is their certain complexity 
and indefiniteness of the procedure of adjusting the 
model parameters. 

This paper is devoted to solution of this problem. 
The model we propose is a modification of the 
Gaussian model of broken clouds. Therefore, we first 
will give a brief outline of the Gaussian model, and 
then present a new model modification and method of 
estimation of the parameters, which make it possible 
to adapt the model to real data. 

 

1. Gaussian model  
of broken cloud field 

 

The Gaussian model of broken clouds was first 
proposed by Mullamaa,18 who hypothesized that the 
cumulus clouds can be described using stationary 
Gaussian process. Based on this hypothesis, a 
theoretical-experimental model of statistical structure 
of cumulus clouds was created (see Refs. 19 and 20). 
Then, in Refs. 13 and 14 this hypothesis was used to 
construct a numerical model of cloud structure for 
simulation of solar radiation transfer. 

Let us proceed to description of the Gaussian 
model. We assume that the clouds are bounded by 
the plane z = H0 below (cloud base, defined by the 
water vapor condensation level, varies little in 
space), while the top boundary z = w(x, y) is given 
by the expression (model À) 

 w(x, y) = H0 + max[σ(v(x, y) – d), 0], (1) 

where d ∈  (–∞, +∞), σ > 0, v(x, y) is the homogeneous 
Gaussian field with zero mean, unit variance, and 

normalized correlation function K(x, y), K(0, 0) = 1. 
Thus, it is assumed that the cloud medium is 

concentrated on the set {(x, y, z): H0 < z < w(x, y)}. 
The value w(x, y) = H0 means that there is a gap in 
the cloud field over a point with coordinates (x, y) 
in a horizontal plane. The absolute cloud fraction n0 
for this model is defined by the formula  
 

 n0 = 1 – Φ(d), (2) 
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where Φ is the function of the standard normal 
distribution. The specific feature of model (1) is that 
for d < 0, n0 > 0.5 the cloud configuration corresponds 
to the structure of overcast clouds with gaps. 
Therefore, Kargin and Prigarin13

 proposed as a model 
of cumulus clouds, in addition to Eq. (1), the model B: 
 

  w(x, y) = H0 + max{σ[|v(x, y)| – d], 0}, d > 0. (3) 

In this case 

 n0 = 2[1 – Φ(d)]. (4) 

Let m0 denotes the average cloud amount per unit 
area. Based on the results presented in Ref. 21, it is 
not difficult to obtain  

m0 = d(2π)–3/2
 (k20k02 – 2

11k )1/2
 exp(–d2/2), d > 0, (5) 

for model (1) and 

 m0 = 2d(2π)–3/2 (k20k02 –
2

11k )1/2 exp(–d2/2) (6) 

for model (3). Here it is assumed that the correlation 
function is twice differentiable and that  
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For isotropic fields, k20 = k02, k11 = 0, and formulas 
corresponding to Eqs. (5) and (6) take the form 

 m0 = d(2π)–3/2 k20 exp(–d2/2), d > 0, (5′) 

 m0 = 2d(2π)–3/2 k20 exp(–d2/2). (6′) 

Models A and B are uniquely determined by d 
and σ and by the correlation function K(x, y). With 
an appropriate selection of these parameters, the 
models can be readily adjusted to correspond to any 
cloud fraction and mean vertical and horizontal cloud 
sizes. This allows one to use representations (1) and 
(3)  to simulate  different structures of broken clouds. 

Model parameters are determined as follows. 
Provided the cloud fraction n0 is known, using 
formulas (2) and (4), we can first calculate the 
“cutting level” d. Then, based on some additional 
information on cloud configuration in the horizontal 
plane, it is necessary to specify the correlation 
function K(x, y) (this problem as well as a new 
method of its solution with the help of real images of 
cloud fields are discussed below). Finally, the 

parameter σ, responsible for the extension along the 
vertical [see formula (7) below], should be adjusted 
to correspond to the data on vertical cloud extents. 
For more detailed information on adjustment and 
numerical implementation of the models, as well as for 
calculated results on the cloud radiative properties 
obtained using Gaussian simulation models, one can 
see Refs. 13–16.  

The first problem to be solved in constructing 
Gaussian model of broken clouds is the choice of 
correlation function K(x, y). It is the correlation 
function that determines the geometry of modeled 
cloud field and configuration of individual clouds 
and cloud gaps (Fig. 1).  

 
 

 

Fig. 1. Examples of Gaussian model realizations of broken 
clouds for different correlation functions (cloud fraction is 
0.5 in both cases). 

 

In the very first numerical experiments modelers 
frequently used correlation function for isotropic 
fields with the simplest structure  

 K(x, y) = σ2J0[ρ(x2 + y2)1/2], 

where J0 is the Bessel function of the first kind (and 
at the same time, k20 = ρ2/2). Here, parameter ρ is 
responsible for horizontal cloud sizes (the smaller ρ, 
the greater mean horizontal cloud sizes). For its 

determination one can use formulas (5′) and (6′), which 
relate the mean cloud amount m0 per unit area, as well 
as  the  second derivatives of the correlation function. 

The use of such a simplified model for studying 
the qualitative influence of stochastic cloud structure 
on radiative characteristics of radiation field may be 
partially justified. However, the configuration of a 
cloud field for the model with such a correlation 
function seems unnatural (Fig. 2). 

Therefore, it is reasonable to consider the correlation 

functions of a general form; in the isotropic case, it 
can be presented in terms of the integral: 
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 K(x, y) = σ2 2 2 1/2
0

0
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∞
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where z(ρ) is the radial spectral density of a Gaussian 
field, i.e., z(ρ) is an arbitrary nonnegative (possibly 
reduced) function, defined on real half-axis so that 

0

( )d 1z

∞

ρ ρ =∫ . In section 2 we will describe a method 

which allows one to choose the correlation function 
K(x, y), based on satellite and ground-based 

observations. 
 

 
Fig. 2. Configuration of cloud field for Gaussian model 
with correlation function J0 (cloud fraction is 0.5). 

 
The second problem here is that the model 

outlined above provides no possibility of performing 
an independent control of the shape of distribution of 
the cloud layer geometrical thickness w(x,y) – H0 
(leaving only possibility to scale the distribution 
using the parameter σ). This distribution is 

“automatically” determined by other model parameters 
and is a truncated Gaussian distribution with the 
density 

fσ(h) = σ–1ϕ(σ–1h + d)/C, h > 0, C = ( )d ,

d

x x

∞

ϕ∫  (7) 

where 
 ϕ(x) = 1/2π [exp(–x2/2)] 

is the density of standard normal distribution. Real 
distributions may considerably differ from the 
truncated Gaussian distributions. Figure 3 presents 
histograms constructed according to observations on 
Nauru island for periods (a) December 20–22, 1998 
and (b) July 5 – August 5, 1999. Here, we used the 
results of Bayesian data analysis, kindly provided by 
Evans and McFarlane. 

In section 3 we will describe a modification of 
the Gaussian model that allows one to reproduce an 
arbitrary distribution of the cloud layer thickness 
(e.g., determined through statistical processing of 
field measurements). 
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Fig. 3. Examples of histograms of the geometric thickness 
of a cloud layer, in m. 
 

Note. This paper is not concerned with the 
problem of numerical simulation of homogeneous 
Gaussian random field v(x, y). This problem is quite 
extensively discussed in Refs. 22 and 23, where, in 
particular, spectral models and schemes based on 
moving summation are considered. As our experience 
shows, spectral models have certain advantages.22 
Actually, we have used the spectral models of Gaussian 
homogeneous and isotropic fields in the numerical 
experiments; their results are presented below.  

 

2. Calculation of correlation function 
K(x, y) for Gaussian model of broken 

clouds according to observations 
 
Let I(x, y) denotes a cloud indicator field, equal 

to 0 if there is a gap in the cloud over a point with 
the coordinates (x, y) in a horizontal plane, being 
equal to 1 otherwise. Suppose that ground-based or 
satellite observations allow us to estimate the 
mathematical expectation mI (which coincides with 
the cloud fraction n0) and the covariance function 
KI(x, y) of the cloud indicator field I(x, y), 
KI(x, y) = E I(x, y) I(0, 0). From formulas (2) and 
(4) we can determine the parameter d of the 
Gaussian model. The covariance functions of the 
indicator field I(x, y) and Gaussian field v(x, y) are 
related by equalities (for more information about 
nonlinear one-point transformations of the Gaussian 
functions, see Refs. 15 and 23): 
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 KI(x, y) = ( , )

,

( , )d dK x y
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ϕ ξ η ξ η∫∫  (8) 

for model À and 

 KI(x, y) = 2 ( , )

,
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 + 2 ( , )

,
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for model Â. Here ϕρ is the density of two-
dimensional Gaussian vector with zero mean, unit 
variances of components, and correlation coefficient ρ 
between the components: 
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Thus, the correlation function K(x, y) for the 
Gaussian model can be calculated from the covariance 
function KI(x, y) of the indicator field and by 
inverting formulas (8) and (9). For calculations it is 
reasonable to use representations in terms of Owen 
functions (see Ref. 24, as well as Ref. 25, where the 
method based on transformations of Gaussian fields 
was used for modeling binary random fields). These 
are the equalities  

 KI(x, y) = Φ(–d) – 2T(d, a(x, y)) (10) 

for model À and 

 KI(x, y) = 4[Φ(–d) – T(d, a(x, y)) + 

 + T(d, 1/a(x, y))] (11) 

for model B, where  

 a(x, y) = 
1 ( , )

1 ( , )

K x y

K x y

−
+

 

and 
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are Owen functions.  
The above-mentioned method of construction of 

Gaussian models of broken clouds was tested by use 
of experimental data of satellite and ground-based 
observations. Figure 4 presents an image (indicator 
function) of a cloud field with the resolution of 1 km, 
obtained from a satellite using multichannel radiometer 
(see Ref. 26), together with the results of simulation 
of the cloud field, based on the Gaussian model. 

Real cloud field was used to estimate cloud 
fraction and covariance function of the indicator field 
KI(x, y), and then formula (10) was numerically 
inverted to determine the correlation function K(x, y) 
for the Gaussian field v(x, y) and a realization of the 
model À was constructed according to formula (1). 
Note that, in estimating the covariance function of 
the indicator field and in constructing the Gaussian 
model, we used assumed random fields isotropic. 

 
à 

 
b 

Fig. 4. Image (indicator function in horizontal plane) of a 
cloud field 200 × 200 km in size with the resolution of 
1 km, obtained from satellite (a), and a realization of the 
mathematical simulation model. Cloud fraction is 0.6 (b). 

 

Another example presented below is based on 
the data kindly provided by McFarlane et al.27 The 
received data array was obtained using Bayesian 
analysis of ground-based observations performed on 
Nauru island as part of Atmospheric Radiation 

Measurement (ARM) research program for the period 
from July 5 to August 5, 1999 (Fig. 5). 
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Fig. 5. Estimate of normalized correlation function of cloud 
indicator field. 
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Fig. 6. Gaussian model realizations of broken clouds 
(200 × 200 km), constructed using “real” correlations of the 
indicator field: model À (à), and model Â (b). 

 
Based on available time series and information 

about wind velocity, we estimated cloud fraction and 
covariance function of the indicator field. And again, 
as in interpretation of satellite observations, we used an 
assumption of statistical homogeneity and isotropy of 
the cloud field. Realizations of the Gaussian models À 
and Â are presented in Fig. 6. Cloud fraction (0.25) 
and correlations of the indicator field were estimated 
according to data of observations on Nauru island 
between July 5 and August 5, 1999. 

An additional analysis (comparison of distributions 
for the lengths of the cloud-free and cloud-covered 
segments) showed that the model Â better agrees with 
the results of observations than the model À. Here 
we note that, in fact, model B has more clouds per 
unit area than model A [see Eqs. (5) and (6)]. 

 

3. Gaussian model modification to 
reproduce distribution of geometrical 

thickness of cloud layer 
 

As was already noted in section 1, the distribution 
density of the cloud layer thickness for Gaussian 

model is defined by formulas (7), which may turn 
out to poorly agree with real distribution determined 
from experimental data. We will now describe a 
modification of Gaussian model, allowing one to 
reproduce an arbitrary distribution of cloud layer 

thickness. The suggested modification is a variant of 
the method of inverse distribution function, widely 
used in statistical modeling.15,23 The probability 
density of cloud layer thickness, determined according 
to observations, will be denoted by g(h), h > 0, 
while the corresponding distribution function by G:  
 

 G(h) = 

0

( )d ,

h

g x x∫  h > 0. 

We will now consider the distribution density 
f1(h) from Eq. (7) for σ = 1 and the corresponding 
distribution function F: 

 f1(h) = ϕ(h + d)/C, h > 0,  

 C = ( )d ,

d

x x

∞

ϕ∫  F(h) = 1

0

( )d .

h

f x x∫  

In analysis below, instead of models (1) and (3) we 
will consider the modified models: 

 w(x, y) = H0 + G–1F[max{v(x, y) – d, 0}],  

 d ∈  (–∞,+∞), (1′) 

w(x, y) = H0 + G–1F[max{|v(x, y)| – d, 0}], d > 0. (3′) 

For these models, the distribution density of cloud 
layer thickness exactly coincides with density g, 
while all the other relations (2), (4)–(6), (8), and 
(9) (for cloud fraction, mean cloud amount, and 
covariance function of indicator field) remain 
unchanged.  

Figure 7 shows the distribution density of a 
cloud layer thickness for the Gaussian model Â, 
constructed using data of observations on Nauru 
island for period July 5 – August 5, 1999.  

 

0 500 1000 1500 2000 2500 3000 

Cloud thickness, m 

1
2

 
Fig. 7. Shape of the distribution density of geometrical 
thickness of the cloud layer for Gaussian model Â with 
cloud fraction 0.25 (curve 1) and for the corresponding 
modified model adapted to results of observations (curve 2). 
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For observed cloud fraction of 0.25 the 

corresponding value of d is 1.15. It is worthwhile to 
note that the model-reproduced distribution bears 
little resemblance to real distribution of the cloud 
layer thickness determined according to measurement 
results (curve 2 in Fig. 7 and lower diagram in 
Fig. 3). The modified model (3′) allows one to 
reproduce exactly the distribution of  a cloud layer 
thickness. 
 

Conclusion 
 

In this paper we have proposed two comparatively 
simple methods, enabling one to adapt the numerical 
Gaussian models of broken clouds to satellite and 
ground-based observations of cloud fields. These 
methods are capable of reproducing real covariance of 
the cloud indicator field and distribution of the cloud 
layer thickness. 

Let us highlight certain problems whose solution, 
in our opinion, is critical for further development of 
the parametric cloud models by numerical simulations. 

1. In the models, considered above, the cloud 
base is assumed to be constant. This is quite rough 
assumption (Fig. 8), and variation of the cloud base 
may have a considerable influence on the 
characteristics of the radiative field. Therefore it is 

desirable that the model takes adequately into account 
the random distribution of the cloud base.  
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Fig. 8. Examples of histograms for distance (m) to bottom 
(light bars) and top (shaded bars) boundary of cumulus 
clouds. The histograms are constructed based on observations 
on Nauru island for periods (à) December 20–22, 1998  
and (b) July 5 – August 5, 1999. We used the results  
of Bayesian data analysis provided by Evans and McFarlane. 
 

2. The table presents correlation coefficients 
between different characteristics of the broken cloud 
field. The correlation coefficients were calculated 
using two data arrays obtained by processing the data 
of ground-based observations carried out on Nauru 
island as a part of the ARM program for periods 
December 20–22, 1998 and  July 5 – August 5, 1999. 

To calculate the correlation coefficients, we used 
the results of Bayesian data analysis provided by 
Evans and McFarlane. 

 

Correlation coefficients between different characteristics 
of a broken cloud field according to data of observations 
on Nauru island for period (1) December 20–22, 1998  

and (2) July 5 – August 5, 1999 

Data array (1) (2) 

Distance to cloud base/ 
 geometrical cloud layer thickness  

 
–0.42 

 
–0.02 

Geometrical cloud layer thickness/ 
 cloud extinction coefficient 

 
0.39 

 
–0.04 

Distance to cloud base/ 
 cloud extinction coefficient  

 
0.01 

 
0.16 

 

From the table, in particular, it is seen that the 
geometrical thickness of the cloud layer may depend 
substantially on the distance to the cloud base, while 
the extinction coefficient in cloud medium may 
correlate with geometrical thickness (left column of 
the table) and with the distance to cloud base (right 
column). Possibility to take into account not only 
random cloud geometry but also the inhomogeneity of 
the cloud optical properties and to adjust the 
simulation model in accordance with a specified 
correlation coefficients could have been an invaluable 
tool for complex study of the influence of stochastic 

cloud structure on characteristics of the radiative 
fields. 

Studies aimed at developing such models seem to 
be highly promising. In this regard we only mention 
Refs. 28 and 29, in which the 3D field of cloud 
liquid water path is simulated based on the same 
principles used in the Gaussian models considered in 
this paper: preliminary modeling of a Gaussian field 
on the basis of discrete Fourier transform (discrete 
analog of spectral models) and subsequent nonlinear 
transformation of the Gaussian field. In particular, in 
Ref. 29 such an approach is used to simulate 3D 
fields of liquid water path and effective radius of 
water droplets in the cloud, based on two-dimensional 
radar measurements. 

Methods suggested in Refs. 28 and 29 are more 
laborious and they require more complicated 

procedures of estimation of the parameters than those 
used by Gaussian models; at the same time, they 
allow one to construct cloud indicator field correlating 
with the optical characteristics of the cloud medium. 
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