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The dependence of the molecular complexes X2…Y polarizability on the distance between the
atom Y and the molecule X2, the internuclear separation of the molecule X2, and on the orientation
of the molecule X2 with respect to the complex has been investigated theoretically and analytical
description is proposed. The polarizability of the complex was calculated within the framework of
modified DID model, in which a molecule that enters a dimer is represented as two anisotropic
effective atoms. The polarizability of these effective atoms was determined by the polarizability of
the molecule X2 and its orientation in the dimer. The polarizability of the complexes X2…Y (X2=N2,
O2 and Y=He, Ne, Ar, Kr, Xe) has been calculated.

Introduction

A characteristic feature of the van der Waals
complexes is weak interaction between the complex
components. This manifests itself in the low bond
energies. The potential energy surface of complexes
usually has a very complicated shape with one or
several minima, giving the stable configurations of the
complexes.1,2 However, even small rotation-vibration
excitation of the complexes leads to appearance of
large-amplitude internal motions, due to which the
complexes are mostly in unstable configurations. The
complexes in stable configurations obviously play the
dominant role only at a very low gas temperature. As
the temperature increases, the role of the complexes
in unstable configurations increases and becomes quite
noticeable at atmospheric temperatures.

In Part 1 of this paper,3 we have calculated the
polarizability of the van der Waals complexes X2…Y
in stable configurations. For unstable configurations,
the method of polarizability calculation used in
Ref. 3 gives very cumbersome expressions, practically
unsuitable for analysis. That is why in this paper
we use the iterative method of calculation, which is
less accurate, but gives rather compact analytical
expressions for the components and invariants of the
polarizability tensor of the X2…Y complexes in an
arbitrary configuration.

Analytical representation
of the X2…Y complex polarizability

To calculate the polarizability of molecular
complexes, we use the dipole-induced-dipole (DID)
model, formulated by Silberstein for a system of

interacting atoms4,5 and then adapted to molecular
systems.6 Within the framework of the modified DID
model, each molecule of the complex is represented as
a set of effective atoms, whose polarizability depends
on the internuclear separations in the molecule. In
this representation, there is no interaction between
the effective atoms of the same molecule, and their
total polarizability coincides with the polarizability
of the molecule itself. As a result, the atom–molecule
complex can be represented as a set of interacting
real and effective atoms, and the polarizability tensor
of such a complex ααβ can be written as a series6:
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where m
αβα  is the polarizability tensor of a real or

effective atom m; N is the total number of the real
and effective atoms in the complex. The subscripts α,
β, γ, δ, ε, and ρ stand for X, Y, Z of the Cartesian
coordinate system (repeating Greek subscripts denote
summation). The tensor mnTβγ  in Eq. (1) has the form
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Here rmn is the distance between the atoms m and n;
mnrβ are the components of the vector rmn. Equation (1)

describes the polarizability tensor of any atom–
molecule complex in an arbitrary configuration.
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To calculate the polarizability of the X2…Y
complex, introduce two Cartesian coordinate systems:
the complex-fixed coordinate system X, Y, Z (the
axis Z passes through the center of the molecule X2

and the atom Y) and the X2 molecule-fixed coordinate
system x, y, z (nuclei of the molecule lie on the axis
z). The orientation of the molecule in the complex is
described by the Euler angles θ and ϕ (Fig. 1). In the
coordinate systems chosen in this way, the
polarizability of the complex X2…Y depends on the
distance R between the atom Y and the center of the
molecule X2, on the distance r between the nuclei of the
molecule X2, and on the orientation of the molecule
X2 in the complex (angles θ and ϕ), as well as on the
polarizability α of the spherically symmetric atom Y and
the polarizability tensor m( )ii rα of the molecule X2.

Fig. 1. Cartesian coordinate systems used in this work.

The components of the polarizability tensor of the
complex X2…Y have been calculated by Eqs. (1) and
(2) accurate to R–6 terms inclusive. As a result, the
following analytical expressions have been obtained:
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In some cases, of interest are not the components
of the polarizability tensor of the complex, but the
tensor invariants, such as the mean polarizability
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and the square polarizability anisotropy
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Note that α(r, R, θ) and γ2(r, R, θ) are independent
of the angle ϕ, because the invariants of the
polarizability tensor do not depend on the orientation
of the complex as a whole. The calculation has yielded
the following analytical expressions for the invariants
of the polarizability tensor of the complex X2…Y:
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is the mean polarizability of the molecule X2 and
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is the anisotropy of its polarizability tensor.

Calculated results

The analytical expressions presented above have
been used in calculating the components and invariants
of the polarizability tensor of X2…Y complexes
(X=N, O and Y=He, Ne, Ar, Kr, Xe) as functions of
the angles θ and ϕ assuming the equilibrium distances
re and Re corresponding to the most stable
configuration of the complex. In the calculations, we
used the components of the polarizability tensor of
N2 and O2 molecules: αyy(r) = αxx(r) and αzz(r) from
Ref. 7, as well as the polarizability α of atoms of the
inert gases from Refs. 8–11. As an example, Fig. 2
depicts the components of the polarizability tensor of
the N2…Ar complex as functions of the angles θ and
ϕ. It is clearly seen that the complex polarizability
strongly depends on the orientation of the molecule
N2, and the variability range of the diagonal
components of the polarizability tensor significantly
(roughly by 10 times) exceeds that of the off-diagonal
components. The dependences shown in Fig. 2 are
characteristic of the other studied complexes as well.

It is interesting to consider how the invariants of
the polarizability tensor of the complex vary at
different values of the angle θ. For this purpose, by
analogy with Ref. 3, introduce the non-additive parts
of the invariants of the complex polarizability tensor

m
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and
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The calculated dependences ∆α(re, Re, θ) and
∆γ2(re, Re, θ) on the angle θ for the complexes N2…Y
(Y=He, Ne, Ar, Kr, Xe) are shown in Fig. 3.

The analysis of these dependences suggests the
following:

1. The invariants of the polarizability tensor of
the complex in its most stable configuration (θ = 90°)
are smaller than the sums of the corresponding
invariants of the polarizability tensors of the non-
interacting atom and molecule.
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Fig. 2. Components of the polarizability tensor (in Å3)  of  N2…Ar complex at R = Re and r = re; the angles θ and ϕ are
measured in radians.

2. The invariants of the polarizability tensor of
the complex increase as its geometry alternates from
the T-configuration (θ = 90°) to the L-configuration
(θ = 0°).

3. The range of possible variations of the invariants
of the complex polarizability tensor increases with the
increase in the polarizability α of the atom of an
inert gas.

4. The relative change of the mean polarizability
of the complex is much smaller (1–2 orders of
magnitude) than the relative change of the square
polarizability anisotropy:
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Fig. 3. Variation of the non-additive part of the mean
polarizability (a) and the square polarizability anisotropy (b)
of N2…Y complexes at R = Re and r = re:  N2…He (1),
N2…Ne (2), N2…Ar (3), N2…Kr (4), N2…Xe (5).

The calculation of the components and invariants
of the polarizability tensor by Eqs. (3)–(8) and (11),
(12) includes an error, because the series (1) is
restricted to the terms ∼ R–6. For the considered
complexes (at R = Re), this error amounts to ∼ 0.001 Å3

for the components of the polarizability tensor and
the mean polarizability and ∼ 0.01 Å6 for the square

polarizability anisotropy. It should be noted that this
error does not include the errors inherent in the
modified DID model. However, the check of this model
with N2…N2 complex taken as an example showed that
it provides for the reliable values of polarizability of
the van der Waals complexes.6

Conclusions

The analytical expressions for the polarizability
of X2…Y complexes have been derived within
the framework of the modified DID model. These
expressions reflect the regularities in the
transformation of the polarizability tensor of such
complexes as functions of the internuclear separation
of the molecule X2, the distance between the atom Y
and the molecule X2, as well as the orientation of the
molecule X2 in the complex. The results of this work
can be used in studies of the influence of van der Waals
complexes on the properties of gaseous media under
various thermodynamic conditions and, in particular,
to determine the role of X2…Y complexes in physical
and chemical processes in the Earth's atmosphere.
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