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A generalized equation for determination of the regression coefficients of the linear equation
Y = K0 + K1X is presented for the general case, when the point spread in the correlation between X
and Y is caused both by random measurement errors and by uncontrollable physical factors. All the
known equations for the regression coefficients appeared to be particular cases of the equation
obtained. Methods are proposed and equations are presented for estimation of the rms errors of
measured parameters, entering into the equation for calculation of the regression coefficients, from
experimental data.

Introduction
Working with the experimental data often calls

for determination of the coefficients of linear
regression between two physical parameters. In the
majority of cases, the regression coefficients have
specific physical meaning and for correct
interpretation of the obtained results, it is very
important to determine their values in a proper way.
There are few formulas for determination of the
regression coefficients,1–3 but no general idea exists,
which formula should be used in each specific case.
Now there is no unified approach to determination of
the linear regression coefficient in the general case,
i.e., when the scatter of points in the correlation
diagram between two values has been caused by both
their random measurement errors and uncontrolled
physical factors.

The purpose of the present paper is to determine
a generalized formula for calculation of the linear
regression coefficients and to apply it to construction
of single-parameter regional models of the aerosol
extinction.

1. Statement of the problem
Let us consider two physical parameters X0 and

Y0 that correlate. Let us suppose that the correlation
can be described by a linear dependence

Y0 = K0 + K1 X0, (1)

and the task is to determine the regression coefficients
K0 and K1, which describe the physical relation
between them in the best way.

As X0 and Y0 are measured with random errors,
in practice we deal with the values X and Y, for
which the linear regression equation is written in the
form

Y = K0 + K1 X. (2)

The form of formulas (1) and (2) with equal
regression coefficients is an evidence of the fact that
the last should not depend on the random
measurement errors in X and Y. Then let us consider
determination of only the regression coefficient K1,
because K0 is calculated after determining K1 by the
known formula

0 1 ,K Y K X= − (3)

where X  and Y  are the mean values of X and Y.

2. New approach
New approach to determination of the regression

coefficient K1 is based on two suppositions.
1. The values X and Y are normalized to the

quantities
0

2 2
X Xδ + δ  and δ + δ 0

2 2 ,Y Y  respectively.

2. The orthogonal mean-square regression is used
for determination of K1, i.e., the sum of squares of
deviations perpendicular to the sought straight line is
minimized.

The values δX and δY are the random measurement
errors in X and Y for the data array considered; δX0

and δY0
 are some values, which characterize the scatter

of points in the correlation of the physical values X0

and Y0 due to uncontrolled physical parameters. Then
the regression equation can be written in the form

′ ′= +
δ + δ δ + δ0 0

0 12 2 2 2
Y Y X X

Y X
K K  (4)

The values δX0
 and δY0

 are determined here from
solution of the system of two equations.

To obtain the first equation, let us use the
known formula1:

ρXYσXσY = ρX0Y0
σX0

σY0
, (5)
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where ρXY is the coefficient of correlation between X
and Y; σX and σY are the rms deviations of X and Y;
ρX0Y0

 is the coefficient of correlation between X0 and

Y0; σX0
and σY0

 are the rms deviations of X0 and Y0.
 Then let us write the first equation in the form

0 0 0 0 0 0 0 0
2 2 2 2 ,X Y X Y X X Y Yρ σ σ = σ − δ σ − δ  (6)

where

0
2 2

X X Xσ = σ − δ ; 0
2 2

Y Y Yσ = σ − δ .

Then let us write the second equation in the
form

0 0 0 0/ /X X Y Yδ σ = δ σ (7)

and call it the condition of proportionality of the
values δX0

, δY0
 and σX0

, σY0
. Introduction of the

values δX0
, δY0

 and formulation of the condition (7)
are the key moments in this paper, because this has
allowed us to obtain the generalized solution of
Eq. (2) for the linear regression coefficients.

3. Results
Upon solving the system of equations (6) and

(7) we obtain

)( )(0

2

2
2 2 2 2

1 1 ,
1 1

XYX
X X

X X X Y Y

 
  ρ δ

δ = σ − −   σ   − δ σ − δ σ 


 (8)

)( )(0

2

2
2 2 2 2

1 1 .
1 1

XYY
Y Y

Y X X Y Y

 
  ρ δ

δ = σ − −   σ   − δ σ − δ σ 


 (9)

Taking into account expressions (8) and (9), let

us determine the values
0

2 2
X Xδ + δ  and

0
2 2
Y Yδ + δ  in

the following form:

0
2 2 ,X X X Aδ + δ = σ (10)

0
2 2 ,Y Y YBδ + δ = σ (11)

where

0 0

2 2 2

2 2 2
1

1 (1 ) 1 ,
1

X X X
X Y XY

X Y Y
A

δ − δ σ
= − ρ − = − ρ

σ − δ σ
  (12)

0 0

2 2 2

2 2 2
1

1 (1 ) 1 .
1

Y Y Y
X Y XY

Y X X
B

δ − δ σ
= − ρ − = − ρ

σ − δ σ
 (13)

Taking into account Eqs. (10) and (11), let us
write the linear regression equation (4) in the form

0 1 .
Y X

Y X
K K

B A
′ ′= +

σ σ
(14)

It is easy to reduce Eq. (14) to the form (2):

0 1 0 1 ,Y
Y

X

B
Y K B K X K K X

A
σ′ ′= σ + = +
σ

 (15)

where

0 0 ,YK K A B′= σ (16)

1 1 .Y

X

B
K K

A
σ′=
σ

(17)

Applying the orthogonal mean-square regression
to Eq. (14) and using the relationship (17), we
obtain the formula for the regression coefficient
sought:

2
2

1
1

4 ,
2

Y
XY

X XY

B A B A B
K

A B A B A

 σ     = − + − + ρ    σ ρ      
 (18)

where À and Â are determined by formulas (12) and
(13). Formula (18) was presented for the first time in
Ref. 4 and described in detail in Ref. 5.

4. Analysis
The formula (18) allows one to establish an

unambiguous relation between X and Y and to
determine the conditions for applying the known
types of linear regression.

Let us show that all analytical formulas known
for the regression coefficient K1 of Eq. (2) are the
particular cases of Eq. (18).

4.1. In the case when the scatter of points in
correlation between X and Y is caused only by their
random errors, i.e., ρX0Y0

 = 1, we obtain the known
formula for the regression coefficient K1 presented in
Ref. 1.

 δ σ δ σ δ= − + δ ρ σ δ σ δ 
 σ δ σ δ + − + ρ  σ δ σ δ  

1

2
2

1
2

4 .

Y Y X X Y

X XY X Y Y X

Y X X Y
XY

X Y Y X

K

(19)

4.1.1. At δX = 0 and δY ≠ 0 we have

1
0

1
lim

2X

Y Y X X Y

X XY X Y Y X
K

δ →

 δ σ δ σ δ= − + δ ρ σ δ σ δ 

2
21 4 .Y X X Y Y X
XY

X Y Y X X Y

   σ δ σ δ σ δ + − + + ρ    σ δ σ δ σ δ    
Expanding the expression under the square root

sign into the Maclaurin series6 and taking only two
first terms, we obtain

δ →

δ
= ×

δ ρ
   σ δ σ δ σ δ σ δ× − + − + ×   σ δ σ δ σ δ σ δ   

  σ δ σ × + ρ = ρ σ δ σ    

1
0

2
2

1
lim

2

1 2 .

X

Y

X XY

Y X X Y Y X X Y

X Y Y X X Y Y X

Y X Y
XY XY

X Y X

K

(20)

It is the well-known formula for the coefficient
K1 of the direct regression Y = K0 + K1 X, which was
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obtained by means of minimization of the sum of
squares of deviations along Y axis from the sought
straight line.2

4.1.2. At δY = 0 and δX ≠ 0 we have

δ →

 δ σ δ σ δ= − + δ ρ σ δ σ δ 

   σ δ σ δ σ δ + − + ρ    σ δ σ δ σ δ    

1
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2
2

1
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2

1 4 .

Y

Y Y X X Y
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Y X X Y X Y
XY

X Y Y X Y X

K

Expanding the expression under the square root
sign into the Maclaurin series6 and taking only two
first terms, we obtain

δ →

 δ σ δ σ δ= − + δ ρ σ δ σ δ 

    σ δ σ δ σ δ σ + − + ρ =   σ δ σ δ σ δ σ ρ      
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(21)

Formula (21) also is the well known formula for
the coefficient 1/ 1K∗  of the inverse regression

equation ∗ ∗= +0 1 ,X K K Y  which was obtained by means
of minimization of the sum of squares of deviations
along X axis from the sought straight line.2

4.1.3. At δX = δY ≠ 0 we obtain the known
formula

2
2

1
1

4
2

Y X Y X
XY

XY X Y X Y

K
    σ σ σ σ = − + − + ρ    ρ σ σ σ σ     

 (22)

for the coefficient K1 of the orthogonal regression
equation Y = K0 + K1X, which was obtained by
means of minimization of the sum of squares of
deviations perpendicular to the sought straight line.3

 4.2. If δX/σX = δY/σY, the formula for the
regression coefficient

K1 = σY/σX. (23)

follows from Eq. (18). Let us note that Eq. (23) is
the geometric mean of Eqs. (20) and (21).

5. The range of variability of the
regression coefficient

In the case when the scatter of points in
correlation between the values X and Y has been
caused only by their random errors, i.e., ρX0Y0

 = 1,
the regression coefficient varies within the following
limits:

1
1

,Y Y
XY

X X XY
K

σ σ
ρ ≤ ≤

σ σ ρ
 (24)

and at ρX0Y0
 < 1

1
1

.Y Y
XY

X X XY
K

σ σ
ρ < <

σ σ ρ
 (25)

As is seen from Eqs. (24) and (25), the
coefficients of direct and inverse regressions take
their minimum and maximum values, respectively.

6. Calculation of random errors from
the experimental data

Formula (18) is valuable only when the random
errors δX and δY have been known. The more accurate
the random errors are determined, the less is the
errors in calculating the regression coefficient K1.

In some cases, the values δX and δY can be
determined from the experimental data. Two such
arrays can be obtained for X and Y. Then, using
Eq. (5), we can determine the sought errors:

1 ,X X XXδ = σ − ρ (26)

1 ,Y Y YYδ = σ − ρ (27)

where ρXX and ρYY are the normalized autocorrelation
coefficients of X and Y, respectively.

If no initial data have been available, one can
use the formulas for approximate estimates in order
to determine the errors by the precise formulas (26)
and (27). To do this, let us select the values X and
X′, Y and Y′, insignificantly differing from each
other.

Assuming in Eq. (5) δX = δX′, δY = δY′, 0 0
1X X′ρ = ,

0 0
1Y Y ′ρ = , we obtain the upper estimates of δX and δY:

2 2 2 2
2 2 2 2( ) ,

2 2
X X X X

X XX X X
′ ′

′ ′
σ + σ σ − σ

δ = − + ρ σ σ  (28)

2 2 2 2
2 2 2 2( ) .

2 2
Y YY Y

Y YY Y Y
′ ′

′ ′
σ + σ σ − σ

δ = − + ρ σ σ  (29)

Let us note that Eqs. (26) and (27) are the
particular cases of Eqs. (28) and (29) under condition
that σX = σX′ and σY = σY′, respectively.

If one of the errors (δX or δY) has been known,
and the scatter of points in the sought dependence
has been caused only by random errors (i.e.,
ρX0Y0

 = 1), then, according to Eq. (5), the values of
other errors are calculated by the following formulas:

2
2

2 21 Y
X X XY

Y Y

σ
δ = σ − ρ

σ − δ
 (30)

or
2

2
2 21 .X

Y Y XY
X X

σ
δ = σ − ρ

σ − δ
 (31)

If one of the errors (δX or δY) has been equal to
zero, then, as follows from Eqs. (30) and (31), the
values of other errors are calculated by the following
formulas:

21X X XYδ = σ − ρ (32)
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or
21 .Y Y XYδ = σ − ρ (33)

Thus, the use of the formulas (26)–(33) under
different conditions makes it possible to estimate the
random errors of the measured parameters directly
from the experimental data.

7. Application of the generalized
formula to construction

of a single-parameter model
of the aerosol extinction

Let us demonstrate the capability and efficiency
of applying Eq. (18) by considering the case of
constructing a model of aerosol extinction, which
allows one to calculate the aerosol extinction in the
wavelength range 1.06 µm (Y) from the data on the
aerosol extinction coefficient in the wavelength range
0.48 µm (X). To do this, let us use the experimental
data obtained in arid zone of Kazakhstan in summer.7

Correlation between the aerosol extinction
coefficients at the wavelengths of 0.48 and 1.06 µm is
shown in Fig. 1. Let us divide the entire array into
three subarrays I, II, and III, as is shown in the
figure by dotted line, and then let us form four
different arrays of their combinations.

To calculate the random errors δX and δY, let us
use formulas (28) and (29), and take the arrays of
the aerosol extinction coefficients in the nearest
wavelength ranges 0.55 and 0.87 µm as the missing
values Õ′ and Y′. Calculating the statistical
characteristics of the aerosol extinction coefficients at
the wavelengths of 0.48, 0.55, 0.87, and 1.06 µm for
each array, we determine the values of the random
errors.

The numbers of the formed subarrays are shown
in Table 1, as well as their dimension, composition of
the values of the statistical characteristics, which are

necessary for calculation of the regression coefficients
of the linear equation α(1.06) = K0 + K1α(0.48) by
the generalized formula (18) and by formulas (19),
(20), and (22), where α(1.06) = Y, and α(0.48) = X.

α(0.48), km–1

Fig. 1.

Parameters of the models of the aerosol
extinction α(1.06) = K0 + K1α(0.48) calculated by
formulas (18)–(20) and (22) are presented in
Table 2. The fact attracts one’s attention that the
models offering the regression Y on X are obtained
for different arrays by Eq. (20) and are characterized
by unstable values of the regression coefficients.

The models obtained from Eq. (22) for the
orthogonal mean-square regression and by Eq. (19)
for the structure ratio1 provide more stable values of
the regression coefficients, but also are unstable, this
is well seen from the array No. 4, as an example.

Table 1. Numbers, dimension, and statistical characteristics of the formed arrays

Array

No. dimension composition
ρXY

X ,
km–1

σX,
km–1

δX,
km–1

Y ,
km–1

σY,
km–1

δY,
km–1

1 160 I + II + III 0.84 0.057 0.0241 0.0063 0.049 0.0200 0.0050
2 120 I + II 0.71 0.047 0.0177 0.0058 0.041 0.0146 0.0051
3 120 II + III 0.72 0.067 0.0194 0.0066 0.057 0.0160 0.0049
4 80 II 0.33 0.056 0.0127 0.0071 0.049 0.0100 0.0049

Table 2. Parameters of the aerosol extinction models α(1.06) = K0 + K1α(0.48)

Formula

 (20)  (22)  (19)  (18)
No. of the

array
K1 K0, km–1 K1 K0, km–1 K1 K0, km–1 K1 K0, km–1

1 0.70 0.009 0.80 0.004 0.84  0.001 0.83 0.002
2 0.59 0.013 0.76 0.005 0.80  0.003 0.82 0.002
3 0.59 0.017 0.77 0.006 0.86 –0.001 0.83 0.001
4 0.26 0.034 0.50 0.020 1.00 –0.007 0.83 0.003
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At the same time, the models obtained for
different arrays by the generalized formula (18) are
less different from each other. These four models are
shown in Fig. 1 by solid lines. Thus, Eq. (18) makes
it possible to obtain stable and reliable regional
models, practically independent of the dimension of
the array and the correlation coefficient ρXY. Besides,
the models obtained by Eq. (18) are physically
correct. The Kazakhstan arid zone in summer is
characterized by practically quasi-neutral spectral
behavior of the aerosol extinction coefficients.7 So,
the regression coefficient K0 of the linear equation
α(1.06) = K0 + K1α(0.48) should be close to zero. As
is seen in Table 2, the generalized formula (18) gives
the closest to zero values K0 for all four arrays.
Taking into account stability of the obtained
regression coefficients and physical correctness of the
results, Eq. (18) is preferable for construction of
linear regression models of the aerosol extinction.

Conclusions
Let us briefly formulate the principal results.
1. The generalized formula has been obtained,

which makes it possible to determine the regression
coefficients of the linear equation Y = K0 + K1 X for
the general case when the scatter of points in
correlation between the parameters X and Y has been
caused by both their random measurement errors and
uncontrolled physical factors.

2. All known relationships for the regression
coefficients are particular cases of the obtained
formula.

3. The ways are proposed and the formulas are
presented for estimation of the random rms errors of
the measured values entering the formula for
calculation of the regression coefficients from the
experimental data.

4. The generalized formula makes it possible to
construct stable reliable and physically correct single-
parameter models.

The obtained formula is interesting for
specialists in processing the experimental data and
can be used for correct physical interpretation
independent of the research field.
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