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To obtain fitted spectroscopic parameters of vibrational bands of linear molecules, it is 
suggested to use the least median method instead of the widely used least squares method. The 
former is known to be robust with respect to presence of outliers in data and provides statistically 
justified estimates. On the contrary, the latter has zero resistance against outliers that may lead to 
distorted estimates and deficient models. Importance and usefulness of the least median method is 
illustrated with an example of deriving fitted spectroscopic parameters of the 40002–01101 band of 
the 12C16O2 molecule. 

 

Introduction 

The overwhelming majority of papers dealing 
with recording and modeling the frequencies of 
rotational-vibrational transitions of linear molecules 
employ the polynomial representation of the 
rotational dependence of energy levels E(J) in a 
vibrational state v: 
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where Gv, Bv, Dv, and Hv are the spectroscopic 
parameters of the state, which are determined from 
fitting to experimental values Ev. The sum of square 
deviations between the experimental and calculated 
energy values is used as a characteristic to be 
minimized. The linear least squares method (LLSM) 
is employed as a minimization technique, because the 
parameters Gv, Bv, Dv, and Hv enters into the 
equation for E

v(J) linearly. Having the fitted 
parameters, it is possible to perform interpolations 
and extrapolations with respect to the rotational 
quantum number J. A disadvantage of this approach is 
that it fails to describe correctly the states involved in 
local (in terms of J) resonances, because Eq. (1) is 
valid only in the case of no resonance interactions. 
When using the LLSM, it is supposed indirectly that 
experimental data include no outliers, that is the 
model (1) can describe all data with acceptable 
discrepancies. Unfortunately, small discrepancies still 
do not guarantee the absence of outliers. 

LLSM method and robust estimation 
methods for linear models  

Theory of LLSM is well developed. A useful 
overview of the use of LLSM as applied to problems 
of molecular spectroscopy can be found in Ref. 1. 
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H  of the model (1) are unbiased and have the 
smallest variance in the class of linear estimates 
(Gauss–Markov theorem). Statistical characteristics 
of the estimates (standard errors, correlation matrix, 
inflation variance factors) give theoretically justified 
information about properties of the model. Using this 
information, an investigator can try to construct a 
model, optimal in a certain sense. In addition, there 
are a number of high-quality computer programs, 
implementing this method. 

A corner stone of the LLSM theory is the 
assumption that the sample of data has a sufficient 
length and errors in data are distributed according to 
the normal law. If this assumption is violated, most 
conclusions of this theory become invalid. 
Unfortunately, large samples with the normal 
distribution of measurement errors are the exception 
rather than the rule. For operation with short 
samples, in which the distribution of random errors 
deviates from the normal law, one should use robust 
methods for estimation of model parameters.2,3 
Several attempts to use such methods in molecular 
spectroscopy were undertaken (see, for example, 
Ref. 4). However, these methods are more time and 
memory expensive as compared with the LLSM, and 
their computer realization is more complicated. That 
is likely why such methods have not found wide 
utility in solving spectroscopic problems. 

Upon fitting, sample data having large 
discrepancies call for further investigation. There are 
two causes for such outliers. On the one hand, they 
can be experimental defects (measurement errors, 
noise, incorrect assignment, etc.) and be meaningless 
from the viewpoint of physical phenomena described 
by the model. On the other hand, they can evidence 
the inadequacy of the model used. It is clear that to 
select one of these two versions, an investigator has 
to analyze the situation. 

It is well known that the LLSM has zero 
resistance to outliers 

2: only one outlier is sufficient to 
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change cardinally the estimates of the parameters 
and, consequently, the structure of the model. This 
outlier itself may be characterized by a minor 
discrepancy. To eliminate this disadvantage, robust 
methods are used. The difference between the LLSM 
and robust methods is illustrated by Figs. 1 and 2, 
borrowed from Ref. 3. Let we have data, consisting 
of three groups of points A, B, and C, which are to 
be fitted with the use of some linear model. If we use 
the LLSM, then the fitting line will be 
approximately such as shown in Fig. 1.  

 

 
Fig. 1. Fitting by the linear least squares method. 
 

In this case, the points of group B, having the largest 
discrepancies, are classified as outliers and are not 
described by the model. This is explained by the fact 
that the LLSM avoids appearance of large discrepancies 
and, in our case, gives the average opinion about all 
points. On the other hand, using the high-robust 
fitting, we obtain the pattern, shown in Fig. 2. It can 
be seen that this method gives the clear opinion about 
most points. The points of group B appear to be well 
described, but the points of group C are the obvious 
outliers. Evidently, the further analysis of groups B 
and C is needed to reveal the source of their anomalous 
behavior. Whether these points are noise measurements 
or they bear important information about the 
phenomena under study, which is not described by the 
linear model,  – these questions remain open. 

 

 
Fig. 2. Fitting by the least median method. 

The least median method (LMM) 

2 is the most 
resistant estimation method. Being developed for 
linear models, this method has a 50% resistance to 

outliers. This means that this method can find up to 
49 outliers in a sample of 100 points. However, it is 
extremely time-expensive, because it deploys the 
combinatorial enumeration of all possible subsamples 
of a fixed length from the entire sample. 

Application of LMM to analysis  
of CO2 bands 

As an example demonstrating the usefulness of 
LMM in spectroscopy, consider the problem on 
determination of Gv, Bv, and Dv parameters of the 
upper state of 40002–01101 band of the 12C16O2 
molecule. Experimental wave numbers νobs were 
borrowed from Ref. 5. Calculated wave numbers 
were modeled as  

 calc ( ) ( 1),
v v

E m E m′ν = − −  (2) 

where v′ = 40002, v = 01101; m = –J for the  P-
branch and m = J + 1 for the R-branch. The 
parameters of the state 01101 were taken from 
Ref. 6. 

The fitting with the use of LLSM gave the 
standard deviation (SD) of 0.0053 cm–1 and the 
discrepancies given in the third column of the Table.  
 

Fitting of spectroscopic parameters of the upper state  
of 40002–01101 band with the use of LLSM and LMM 

Line νobs, cm
–1 LLSM, cm–1 LMM, cm–1 Weight

P5 4804.2693 –0.01151 –0.01481 0.0 
P7 4802.7082 –0.00452 –0.00816 0.0 
P9 4801.1437 0.00140 –0.00269 1.0 
P11 4799.5747 0.00537 0.00083 1.0 
P13 4798.0009 0.00737 0.00249 1.0 
P15 4796.4086 –0.00600 –0.01097 0.0 
P17 4794.8386 0.00637 0.00167 1.0 
P19 4793.2507 0.00457 0.00057 1.0 
P21 4791.6578 0.00176 –0.00107 1.0 
P23 4790.0614 –0.00036 –0.00162 1.0 
P25 4788.4613 –0.00191 –0.00135 1.0 
P27 4786.8574 –0.00303 –0.00072 1.0 
P29 4785.2504 –0.00323 0.00029 1.0 
P31 4783.6415 –0.00172 0.00176 1.0 
P33 4782.0302 0.00030 0.00155 1.0 
P35 4780.4175 0.00287 –0.00158 1.0 
R3 4811.3016 –0.00998 –0.01433 0.0 
R5 4812.8643 –0.00389 –0.00890 0.0 
R7 4814.4257 0.00333 –0.00231 1.0 
R9 4815.9807 0.00684 0.00073 1.0 
R13 4819.0752 0.00771 0.00173 1.0 
R15 4820.6162 0.00728 0.00211 1.0 
R17 4822.1483 0.00201 –0.00177 1.0 
R19 4823.6814 0.00213 0.00027 1.0 
R21 4825.2068 –0.00079 –0.00035 1.0 
R23 4826.7270 –0.00409 –0.00123 1.0 
R25 4828.2445 –0.00519 –0.00027 1.0 
R27 4829.7579 –0.00561 0.00036 1.0 
R29 4831.2690 –0.00385 0.00122 1.0 
R31 4832.7766 –0.00165 –0.00064 1.0 
R33 4834.2823 0.00177 –0.00602 0.0 
R39 4838.7915 0.00911 –0.07542 0.0 
R41 4840.2943 0.00622 –0.13047 0.0 
R43 4841.7919 –0.00908 –0.21753 0.0 
SD, cm–1 0.0053  0.0014  
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Column 1 shows the line assignment, and column 2 
presents the experimental wave numbers. All the data 
had unity weight. The largest discrepancy is within 
0.012 cm–1, and the model (2) seems to be adequate 
to the experimental data. 

Analyze the same data with the use of LMM. The 
program implementing this method was borrowed from 
Ref. 2. The LMM found 9 outliers among 34 points, 
and zero weights were assigned to them, as shown in 
column 5 of the Table. Then the rest 25 points were 
fitted again using the LLSM. The standard deviation 
obtained in this fitting became as low as 0.0014 cm–1, 
and the discrepancies are given in column 4. The 
calculated discrepancies of the zero-weight points are 
underlined. The largest discrepancy for the points, 
included in fitting, is 0.0027 cm–1. Among the zero-
weight data, of greatest interest are R39–R43 lines, 
for which the discrepancy is as high as 0.21 cm–1. 
Other lines are apparently noisy. 

What is the cause for inadequacy of the model 
for the case of J ∼  40? The answer was found from the 
global fitting of 12C16O2 line positions with the model 
of effective Hamiltonian given in Ref. 7. It appeared 
that the state 40002 is in a strong resonance with the 
state 21113, and the maximum of the resonance 
interaction falls just on J ∼  40 [Ref. 8]. It is clear 
that the simple low-order polynomial model (2) 
cannot correctly describe the local (in terms of J) 
interaction. Thus, the robust fitting method proved 
to be capable of separating the data, which are 
inadequate to the model, whereas the ordinary LLSM 
fails to do this. 

Conclusions 

The aim of this paper is to attract attention of 
investigators dealing with assignment of spectra of  
 

linear molecules to the possibility of using the LMM, 
which is characterized by a higher resistance to 
outliers in the experimental data as compared with  
that of the widely used LLSM. The LMM performs 
combinatorial enumeration of subsamples of fixed 
length from the sample of fitted data, and therefore 
it is quite time-expensive. 

In addition to the models considered in this paper, 
this method can also be used to determine experimental 
energy levels from observed transition frequencies using 
the basic quantum-mechanics Ritz principle [see, for 
example, Ref. 9]. 
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