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The optical model of a particle is developed for investigating the energy and polarization 
characteristics of light transmitted through a semitransparent oriented plate. The equations for 
scattering cross sections proportional to the corresponding parameters of the Stokes vector are 
obtained for any point of the forward hemisphere. These equations relate the physical parameters of 
the particle (dimensions, refractive index) and the parameters of the incident radiation (wavelength, 
state of polarization) to the characteristics of radiation transmitted through the crystal at different 
positions of the source, receiver, and the crystal. 

 

Introduction 
 
Clouds play determining role in the thermal 

budget of the earth–atmosphere system. To date, the 
crystal clouds of complicated structure are poorly 
studied. For numerical studies of the transformations 
of light passing through the atmospheric formations it 
is necessary, first, to develop a model of an individual 
particle, which would allow one to adequately reveal 
the dependence of the light scattering characteristics 
on the parameters of the incident radiation and the 
parameters of the scatterer. The problem of extinction 
by small and large crystals with chaotic orientation is 
widely presented in the literature.1,2 The extinction 
matrices are obtained for the particles of spherical  
and non-spherical shape. These models allowed the 

estimation to be done of both the intensity and 

polarization of the transformed radiation in the 

direction of propagation of the electromagnetic wave. 
A preferred orientation of crystals, if any, leads to 

anisotropy of scattering. The difficulties of describing 
the transformation of light passed through a set of 
oriented semitransparent crystals make the problem of 
light scattering by ice atmospheric formations open. In 

determining the extinction of light by oriented 
crystals with plane-parallel sides, one should take into 
account the commensurability of the diffraction field 
and the field of the refracted beams that pass through 

the particle.3,4 The method of physical optics allows 

one to coherently sum the aforementioned fields and  

to take into account the wave nature of the 

electromagnetic radiation in determining the total 
scattered field in the far zone. 

The light scattering characteristics are very 

sensitive to variations of microphysical and optical 
properties of oriented crystals, especially near the 
forward scattering direction. Such characteristics as 
cross section or the extinction efficiency factor (for 
individual particles)5,6 and the extinction coefficient 
(for the system of particles)7 are mainly obtained for 

analysis of light extinction by oriented crystals. 
Numerical investigations have shown that the 

extinction efficiency factor of ice plates can vary 

within the limits from 0 up to 4. For larger plane-
parallel sides of a particle this characteristic varies 
within a narrower range.8 Besides, destruction of 
parallelism of the sides also leads to the tendency in 
the extinction efficiency factor to asymptotically 

approach the value of 2. Thus, ice plates are peculiar 
objects among all types of crystals due to their 
extinction properties. The model for calculating the 
energy and polarization characteristics of light scattered 

into the forward hemisphere is being developed in this 
paper for this type of crystals. 

 

Role of the positions of a radiation 
source, receiver, and scatterer  

in determination of the light scattering 
characteristics into  

the forward hemisphere 
 
As applied to determination of the light scattering 

characteristics at any point of the forward hemisphere, 
let us introduce necessary angular characteristics 

relating the positions of the source, receiver, and the 
particle (see Fig. 1). Let the source of radiation be at 
the point O1, the receiver at the point O2, and the 
particle at the point O3. Let also the Oxyz be the 
absolute coordinate system, relative to which three 

more coordinate systems, Î1õ1ó1z1, Î2õ2ó2z2, and 
Î3õ3ó3z3 are introduced, that are related, respectively, 
to the source, the receiver, and the scatterer. The 
coordinate plane Oxy is parallel to the ground surface, 
and the normal to it is parallel to the Oz axis. 

The incident radiation propagates along the 

positive direction of Î1z1 axis. The Pointing wave 
vector k indicates the direction of the incidence of 
light on the plate base. It is obvious that k Î1z1. 
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Fig. 1. The set of the coordinate systems for description of the light scattering into the forward hemisphere. 
 
Electric components of the incident wave of the 
elliptic polarization (Å1, Å2) are directed, respectively, 
along the axes Î1õ1 and Î1ó1; n⊥  is the normal to the 
incidence plane. An oriented plate is introduced as 
the scattering particle. The plane passing through the 
crystal base is the coordinate plane Î3õ3ó3 of the 
coordinate system Î3õ3ó3z3, β is the angle between the 
direction of the radiation incidence k (or the axis Î1z1) 
and the normal n to the plate base (or the axis Î3z3). 
Electromagnetic field represented by the beams outgoing 

after a number of internal reflections is formed in the 

direction Î3z3. The vector kf indicates the direction  

of the refracted beams outgoing from the plate. 
Obviously, k  kf  Î3zf. The elevation angle ψ and 
azimuth angle ξ set the possible positions of the plate 
caused by its oscillation about the axis Î3z3. At a fixed 
ψ value and continuous change of ξ from 0 up to 2π 
the normal direction to the plate base circumscribes 
the cone with the axis Î3z3. The scattered radiation is 
received from the direction ksc (or axis Î2z2), and the 

axis Î2y2 is parallel to the horizontal plane (or the 
ground surface). The vectors EI and EII are the 
components of the field detected at the receiver. 
They are directed along the Î2x2 and Î2y2 axes, 
respectively. Let us denote the deviation of the receipt 
direction from the line the outgoing beams escape 
from the plate (i.e. the angle between the directions 
Î3zf and ksc) as ϑ. 

For introducing the normalized light scattering 
characteristics, it is sufficient to determine the angular 
position of the unit vector setting the components of 
the scattered field. It this relation, let us superpose 

the centers of all four coordinate systems at the point O 

and define the angular dependences of the unit vectors 
(x, y, z) of the absolute coordinate system with the 
unit vectors (õi, ói, zi) by the following relationship: 
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Obviously, the angles ϑi and ϕi determine the 
position of the unit vectors õi, ói, zi (i = 1, 2, 3)  

of each of the three coordinate systems Oxióizi 

(i = 1, 2, 3)  relative  to  the  absolute  system Oxyz. 
As conventionally accepted the rotations of a body 

in space relative to the Cartesian coordinate system 
are described by the Euler matrix.2 For this reason, let 
us determine the position of the components of the 
incident field (Å1, Å2) in the coordinate system related 
to the scatterer. The unit vectors of the coordinate 
systems Îõ1ó1z1 and Îõ3ó3z3 can be represented by 
means of the linear transformation 
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cos cos cos sin sin cos cos sin sin cos cos sin
sin cos cos cos sin sin cos sin cos cos sin sin .

sin cos sin sin cos
A
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The Euler angles α, β, γ are defined as some 

combinations of the angles ϑ1, ϕ1 and ϑ3, ϕ3.
9  

The elements of the matrix A determine the 

positions of the vectors k, Å1, and Å2 in the coordinate 
system Îõ3ó3z3. One should note that the component 
E1 or E2 at arbitrary orientation angle of the 

polarization plane γ does not lie in the plane of the 

wave incidence. So, for further calculations of the light 
scattering characteristics and application of the Fresnel 
formulas it is necessary to transform the components 

E1 and E2 so that one of them is perpendicular to the 
plane of incidence and the other one lies in it. To do 
this, let us use the following linear transformation: 
 

 
1||

2F⊥

   
   =   
   
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E E
E E
k k

, (3) 

where 

 
cos sin 0
sin cos 0 .
0 0 1

F
− γ γ 
 = γ γ 
 
 

 

The vectors Å⊥  and ||E  in the coordinate system 
related to the plate are determined by the elements of 
the first and second columns of the matrix AF = AF. 
Let us determine the angles setting the position z2 
relative to the vectors Å⊥ , ||,E  kf. If defining the 
matrix B as −1

3 2,S S 9 the sought projections of the 
vector z2 are written as 

 

  
11 21 3113 23 33cos ,x F F FA B A B A Bψ = + +  

 
12 22 3213 23 33cos ,y F F FA B A B A Bψ = + +  (4) 

 
13 23 3313 23 33cos .z F F FA B A B A Bψ = + +  

Taking into account that 

 cos sin cos ,xψ = ϑ ϕ  

 cos sin sin ,yψ = ϑ ϕ  

 cos cos ,zψ = ϑ  

it is easy to determine ϑ and ϕ. The angles ϑ and ϕ 
are counted from the direction kf. Let us introduce a 
new coordinate system Îõsószs related to Îõ3ó3z3: 

 ,T FA A SP=  

where 

 
cos cos sin cos sin

sin cos cos sin sin

sin 0 cos
iS

ϕ ϑ − ϕ ϕ ϑ 
 = ϕ ϑ ϕ ϕ ϑ 
 − ϑ ϑ 

  

 and 
cos sin 0

sin cos 0 .

0 0 1

P
ϕ ϕ 

 = − ϕ ϕ 
 
 

 

The electric components of the scattered field Ås1, 
Ås2 are determined by the elements of the first and 
the second columns of the matrix AT. These vectors 
lie in the plane perpendicular to the direction of 
radiation receipt Îz2. Let EI and EII be the components 
of the field detected at the receiver. Then the ratios 
between Ås1 Ås2 and EI, EII are determined by the 
linear relationships: 

 
1 2I s scos sin ,u u= − +E E E  

  (5) 

 
1 2II s ssin cos ,u u= +E E E  

where 

 
12 22 3212 22 32cos ;T T Tu A B A B A B= + +  

 
11 21 3112 22 32sin .T T Tu A B A B A B= + +  

 
Statement of the problem 

 
Let us consider a hexagonal plate with the base 

side of size a and the thickness d as a scatterer. 
According to the law of crystallographic growth, the 
following dependence is true between the diameter 
and the thickness of the plate1: d = 2.020(2a)0.449. The 
semitransparent ice plate has the refractive index 

.n n i= + χ�  As was mentioned above, the position of 
the hexagonal plate is set in the coordinate system 

Ox3y3z3, and the incident wave is set in the coordinate 
system Ox1y1z1. These two coordinate systems are 
related to each other by the Euler angles α, β, γ. The 
angle α determines the turn of the plate around the 
axis Oz3, the angle β coincides with the angle of 
incidence of the beam on the plate base, and the 
angle γ sets the orientation of the polarization plane 
relative to the incidence plane, or, in other words, it 
determines the possible positions of mutually 
orthogonal vectors E1 and E2 at their turn around the 
axis Oz1. After incidence of the field on the plane, a 
part of it is reflected along the direction (π–β), and 
another part passes into the particle where it 
undergoes refraction and absorption. After a number 
of internal reflections, the refracted beams outgoing 
from the plate are formed mainly along the direction 
β. To determine the total scattering, one should take 
into account the diffraction field caused by the 
appearance of geometric shadow in the wave front 
after passing through the medium containing the 
scatterer, in addition to the refracted beams. 
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Let us determine the scattered field in the forward 

hemisphere. To do this, the following procedure  
for solving the problem is proposed. First, let us 
obtain the total scattered field as coherent sum of the 

refracted and diffracted fields. Then, to determine  

the transformed field in the far zone, let us use the 
method of physical optics, which takes into account 
all necessary maxima in calculation of the Fraunhofer 

integral. Then let us obtain the relationships for the 
scattering cross sections reduced to the corresponding 
parameters of the Stokes vector for the characteristics 
of light scattered into the forward hemisphere. 

 

Field of light scattered  
into the forward hemisphere 

 
One can represent the electromagnetic field of the 

plane incident wave in the coordinate system Îõ1ó1z1 
in the form of the electric component 1 1 2 2,E E= +E x y  
magnetic component 1 2 1 1,H H= − +H x y  and the wave 
vector k. Let us note that the amplitudes of the 
electric and magnetic components are related to each 
other. So, we shall not present the formulas for the 
magnetic components in this paper. 

Let us determine the electric component of the 
total electromagnetic field scattered into the forward 
hemisphere. Let us consider the total field to mean 
the field formed in the far zone resulting from coherent 
sum of the fields diffracted at and refracted through 
the scatterer. Let us represent the scattered field by 
the  known  relationship10: 

 s .
ikre

ikr
=E A  (6) 

Let us set the vector A in the form of the sum of two 

mutually perpendicular vectors A1 and A2: 1 2.= +A A A  

The complex amplitudes of the scattered (A1, A2) and 
the incident (E1, E2) fields are related by the 
relationship10: 

 1 111 12

2 221 22
,

A Eb b
A Eb b

    
=     

    
 (7) 

where bij (i = 1, 2; j = 1, 2) are the elements of the 
amplitude matrix. 

To determine the scattered field, let us use the 
method of physical optics,3 which allows one to 

coherently sum the diffraction field and the field of the 
refracted beams taking into account the phase shift: 
 

 

 
1 1

2 2

D1 R 0 0

D2 R 0 0

( )( cos sin ),

( )( sin cos ).

A A A

A A A

= − ϕ − ϕ

= − ϕ + ϕ

ϑ ϕϑ ϕϑ ϕϑ ϕ

ϑ ϕϑ ϕϑ ϕϑ ϕ
 (8) 

Let us note that the unit vectors of the spherical 
coordinate system ϑϑϑϑ0, ϕϕϕϕ0, r0 are represented by the 
elements of the matrix AT, and the angles ϑ and ϕ are 

defined in the coordinate system Ox1y1z1 related to 
the incident wave. According to the Babine principle, 
the amplitudes of the diffraction field ÀD1 and ÀD2 
are defined as 

 
1

2

2

D 1

2

D 2

(1 cos ) ( , )e ,
4

(1 cos ) ( , )e ,
4

i

i

k
A E F

k
A E F

ψ

ψ

= + ϑ ϑ ϕ
π

= + ϑ ϑ ϕ
π

 (9) 

where k = 2π/λ is the wavenumber, λ is the wavelength. 
The angular function F(ϑ, ϕ) is the Fraunhofer integral 
 

    

ϑ ϕ =

= − ϕ ϑ − ϕ ϑ∫∫

( , )

exp( cos sin sin sin )d d ,
S

F

ikx iky x y
 

(10)
 

where S is the geometric shadow area. In Eq. (9) ψ is 
the phase shift of the undisturbed part of the wave 
front after passing through the volume containing  
the plate: 

 2 sin cos .ka kdψ = β + β  

The amplitudes ÀR1 and ÀR2 of the scattered field 
passing through the plate are determined as the sum of 
the scattered beams formed at multiple passages of the 
part of the front of the primary wave through the plate. 
Using the method presented in Refs. 9 and 11 for 
calculation of the amplitudes of the scattered field, 
we determine the values ÀR1 and ÀR2 in the form 

 
1

2

2

R 1 11 2 12

2

R 1 21 2 22

(1 cos )( ),
4

(1 cos )( ).
4

k
A E a E a

k
A E a E a

= + ϑ +
π

= + ϑ +
π

 (11) 

 11 ||cos cos sin sin ,a u B u B⊥= γ + γ  

 12 ||cos cos cos sin ,a u B u B⊥= γ − γ  

 21 ||cos sin sin cos ,a u B u B⊥= γ − γ  

 22 ||sin sin cos cos .a u B u B⊥= γ + γ  

Angular functions ||B  and B⊥  are determined  
as combinations of the Fresnel coefficients 

( || || ||, , , , ,T T T T R R⊥ ⊥ ⊥
� � ) and the angular scattering 

functions of the jth beams ( , ) ji
jF e ψϑ ϕ  as follows: 

 2( 1)
|| || || ||

1

( , ) ( , ) ,j
J

ij
j

j

B TT R F e ψ−

=

ϑ ϕ = ϑ ϕ∑�  

 2( 1)

1

( , ) ( , ) .j
J

ij
j

j

B T T R F e ψ−
⊥ ⊥ ⊥ ⊥

=

ϑ ϕ = ϑ ϕ∑�  

The transmission || ||, , ,T T T T⊥ ⊥
� �  and reflection ||,R R⊥  

coefficients are determined by the known formulas 
 

 ||
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,
cos cos

n
T

n
ϑ=
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2 cos
,

cos cos
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T
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T
n
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2cos
,
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T
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,
cos cos

n
R
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ϑ − β=
ϑ + β
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cos cos
.

cos cos
n

R
n⊥

ϑ − β=
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The complex refraction angle ϑ�  is determined 

from the Snell’s law 
sin

sin .
n

ϑϑ =�

�
 The factor ( , )jF ϑ ϕ  

in Eq. (13) is the Fraunhofer integral 

    

ϑ ϕ =

= − ϕ ϑ − ϕ ϑ∫∫

( , )

exp( cos sin sin sin )d d ,
j

j

S

F

ikx iky x y
 (15) 

where Sj is the cross section of the beam outgoing 
from the plate after 2j – 1 passages through it in the 
direction β. The phase shifts of the beams of different 
reflection multiplicity are determined as follows: 

 r

r

(2 1) 2 sin
cos

– (2 1)tan sin ,

j
kdn

j ka

kd j

ψ = − + β −
ϑ

− ϑ β

�

 

(16)

 

where ϑr is the real refractive angle related to the 
complex refractive angle ϑ�  as follows: 

 rtan sin /[Re( cos )].n nϑ = ϑ ϑ� �� �  

One should note that formulas (9)–(15) can be 
further simplified. In particular, if considering a 
round plate as a scatterer, the Fraunhofer integrals 
are reduced to analytical form. In particular, we 
obtain the following formula for the relationship (15): 

 
maxmin

1

( , ) cos

2 ( )
exp( cos sin cos ) ,

2

j

j

F a a

h J R
ik

R

ϑ ϕ = π β ×

× − β ϑ ϕ
 

(17)
 

 2 2 2 2 2
maxminsin cos cos sin ,R k a a= ϑ β ϕ + ϕ  

where J1 is the Bessel function of the first order, 

 r(2 1) tan ;jh j d= − ϑ  min /2,ja a h= −  

 22
max /4.ja a h= +  

In the case of ϑ = 0 the Eqs. (10) and (13) are 
significantly simplified, ( , )F Sϑ ϕ =  and ( , ) .j jF Sϑ ϕ =  
 

Light scattering cross section 
 
Let us determine the light scattering characteristics, 

which represent both energy and polarization 
properties of the radiation at any point of the 
forward hemisphere. To do this, let us consider the 
scattering cross sections proportional to the respective 
parameters of the Stokes vector: 

 
2

f f
1

4
,

j j

r
I

I
πσ =  (18) 

where I1 is the intensity of electromagnetic field of 
the incident wave. The Stokes vector parameters Ifj are 
represented by the amplitudes of the transformed field: 
 
 

 
1

2 2
I IIf ,I E E= +  

2

2 2
I IIf ,I E E= −  

 
3 I IIf 2Re( ),I E E=  

4 I IIf 2Im( ).I E E=  

Taking into account the relationships (5)–(19) 

and performing the necessary algebraic operations, we 
obtain the following formulas for the scattering cross 
sections: 

  f
1

,
j

i
ij

I
WM

I
σ =  i = 1, 2, 3, 4; j = 1, 2, 3, 4, (20) 

where 

 
22 (1 cos )
;

2
k

W
+ ϑ=

π
 

Ii (i = 1, 2, 3, 4) are the Stokes vector parameters of 
the incident radiation. The elements of the scattering 
phase matrix Mij are the combinations of the elements 
bkl (k = 1, 2; l = 1, 2) of the amplitude matrix (7): 
 

 
2 2 2 2

11 12 21 22
11 ,

2

b b b b
M

+ + +
=  

 
2 2 2 2

11 12 21 22
12 ,

2

b b b b
M

− + −
=  

 * *
13 11 12 21 22Re( ),M b b b b= +  

 * *
14 11 12 21 22Im( ),M b b b b= − +  

 
2 2 2 2

11 12 21 22
21 ,

2

b b b b
M

+ − −
=  

 
2 2 2 2

11 12 21 22
22 ,

2

b b b b
M

− − +
=  

 * *
23 11 12 21 22Re( ),M b b b b= −  * *

24 11 12 21 22Im( ),M b b b b= − −  

 * *
31 11 21 21 22Re( ),M b b b b= +  * *

32 11 21 12 22Re( ),M b b b b= −  

 * *
33 11 22 12 21Re( ),M b b b b= +  * *

34 11 12 12 21Im( ),M b b b b= − −  

 * *
41 11 21 12 22Im( ),M b b b b= +  * *

42 11 21 12 22Im( ),M b b b b= −  

 * *
43 11 22 12 21Im( ),M b b b b= +  * *

44 11 22 12 21Re( ).M b b b b= −  

The elements bkl, in their turn, are determined as 
the difference between the corresponding components 
of the amplitudes of the diffracted and refracted 
fields (11). Obviously, the extinction matrix derived 
from Mij when the direction of radiation receipt 
coincides with the direction of beams outgoing from 
the plate (ϑ = 0), has more simple form, because 
a12 = a21 (see Eq. (12)). Nevertheless, even in this 
case the algebraic expression for the matrix element 

(19)

(21)
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explicitly depending on the geometric size of the 
particle, its refractive index, parameters of the incident 

radiation, angular characteristics determining the 

position of the particle relative to the source (or the 

receiver) has quite a cumbersome form. For the case 
of ϑ = 0, using Eqs. (6)–(16) and the optical theorem, 
we obtain the following formula for the cross section 
of extinction of polarized radiation by the plate3,11: 
 

 

2
ext || ||

1

3
||

1

2 Re( ) Re( )cos2

Re( )sin2 ,

I
C S Q Q Q Q

I

I
Q Q

I

⊥ ⊥

⊥

= − + − − γ +

+ − γ
 

where 

 ( )2( 1)
|| || || ||

1

,j
J

ij
j

j

Q TT R S e ψ −ψ−

=

= ∑�  

  ( )2( 1)

1

.j
J

ij
j

j

Q T T R S e ψ −ψ−
⊥ ⊥ ⊥ ⊥

=

= ∑�  

 
Conclusion 

 
The numerical model is developed in the 

frameworks of the method of physical optics for 

studying the characteristics of electromagnetic 

radiation passing through the atmospheric ice 
formations. The semitransparent oriented plate 
characterized by the greatest interval of the possible 
values of the extinction factor (0, 4) is considered as 
the scatterer. The relationships for the scattering cross 
section are obtained in the frameworks of the method 
of physical optics in the form of combinations of the 
elements of the scattering phase matrix. The obtained 
formulas allow one to calculate both energy and 
polarization characteristics of light scattering at any 
 

point of the forward hemisphere as functions of the 
particle size and refractive index at different positions 
of the source, receiver, and the scatterer, as well as 
at any wavelength from the optical range and at any 
state of polarization of the incident radiation. 

The numerical model presented allows one to 

study the fine structure of the dependence of extinction 
on the small-angle displacements caused by either 

particle oscillations about their stable position (angles 
ψ and ξ, see Fig. 1) or deviation of the radiation 
receipt line from the “forward” direction, i.e., the 

direction of propagation of the plane front of the wave. 
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