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A semiempirical method has been developed for calculation of the dipole moment functions 
for the NO and CO molecules in the piecewise-continuous form. The dipole moment functions 
obtained exhibit a physically correct asymptotic behavior at small and large internuclear separations 
and agree with the dipole moment functions near the nuclear equilibrium position of the molecule. 
Within the framework of this approach, the account for the multipole and exchange interactions 
allows us to improve the dipole moment functions at large internuclear separations, including the 
range of slight overlapping of electron shells of the interacting atoms.  

 

Introduction 
The carbon monoxide, CO, and nitrogen 

monoxide, NO, molecules are among the most stable 
diatomic molecules in the Earth's atmosphere. These 
molecules were also found in the interstellar space 
and other planetary atmospheres. Although the 
carbon and nitrogen monoxides are minor 
constituents of the Earth's atmosphere, their role in 
atmospheric physical and chemical processes is quite 
significant. Various physical properties of these 
molecules have been studied in numerous papers, but 
some their characteristics, in particular, dipole 
moment functions still call for further investigation. 
The concept of the dipole moment function of a 
diatomic molecule arises due to application of the 
adiabatic approximation. In this approximation, the 
dipole moment of a molecule becomes a function of 
its internuclear separation R, which is a more 
complete and important characteristic of a molecule 
that the dipole moment in the equilibrium state Re 
that is usually given in the reference literature. 

The scientific literature discusses various 
approaches and methods to construct the dipole 
moment functions of the CO and NO molecules. One 
group incorporates methods for description of the 
dipole moment functions in a limited variability 
range of internuclear separations of these molecules, 
for example, near their equilibrium positions. It 
includes both ab initio calculations of the dipole 
moment functions1–7 and dipole moment functions 
near the equilibrium position specified as a Taylor 
series, whose coefficients are determined from 
intensities of the absorption lines.8–11 Another group 
incorporates semi-empiric methods, for example, Pade 
approximation12–14 and the exponential forms, 

15,16 
which allow one to describe the dipole moment 
functions all over the range of internuclear 
separations of the CO and NO molecules. Though the 

dipole moment functions specified by the Pade 
approximation or exponential forms may be close to 
real ones, they fail to describe the physical pattern of 
formation of the dipole moment function of molecules 
because no physically justified criteria for selection of 
these forms exist. 

In this paper we propose different approach to 
construction of the dipole moment functions of the 
CO and NO molecules for the whole range of their 
internuclear separations. Within the proposed method, 
the dipole moments of the molecules are represented by 
piecewise-continuous functions exhibiting physically 
correct asymptotic behavior at small and large 
internuclear separations and coinciding with the 
experimental dipole moment functions near the 
equilibrium position of the nuclei. 

Asymptotic description  
of the dipole moment functions 
Determination of a dipole moment function of a 

molecule is a complicated problem that requires 
calculation of the wave function of a molecule for 
arbitrary values of its internuclear separations R. 
There are three subranges of internuclear separations, 
in which the wave function can be specified 
analytically: subrange of small R values and 
subrange of large R values, which, in its turn, can be 
divided into two parts depending on the type of 
dominating interaction: multipole (at R → ∞ ) and 
exchange (at smaller R) interactions. 

Subrange of small R 

For small internuclear separations ( 0R → ) the 
molecular wave function can be calculated by 
methods of the perturbation theory with the wave 
functions of the "joint" atom taken as zero-
approximation functions. So in the first order of the 
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perturbation theory approximation the dipole moment 
function of the molecule in the ground electronic 
state can be represented as 
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where Ek is the energy of the kth state of the joint 
atom; µm0 are matrix elements of the dipole moment 
operator, and the matrix elements of the perturbation 
operator V0m(R) have the form 

17: 
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As a result, the dipole moment function in the 
subrange of small R can be written as  
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where the coefficients ia  are individual for every 

molecule. 

Subrange of multipole interaction 

In this subrange of the internuclear separations, 
the molecular wave function can also be calculated 
by the methods of perturbation theory, but now the 
products of the wave functions of atoms forming the 
molecule can be taken as zero-approximation 
functions. In this case, the dipole moment function of 
the molecule can be expressed through the 
characteristics of individual atoms, just which do 
determine its asymptotic behavior at R → ∞ .  

If at R → ∞  the molecule XY decomposes into 
the atoms X and Y having quadrupole moments, then 
the decisive contribution to the dipole moment 
functions of the molecule XY is due to the dipole-
quadrupole interaction operator  

 V
^
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R
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z  Q
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where µ^
X

z is the z-component of the dipole moment 
operator of the atom X (the axis z coincides with the 
molecular axis); the zz-component of the quadrupole 
moment operator of the atom Y has the form  
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zz
2 2(3 )
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As a result, the dipole moment function of the 
molecule can be written in the form 
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zz LL M  and ( ),
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zz LQ L M  are the static 

polarizability and the quadrupole moment of the atom 

X in the state with a preset values of the orbital 
moment quantum numbers L and ML. In this case, for 

the values M 

X

L and M 

Y

L the following condition 
X Y

L LM M+ = Λ (Λ is the projection of the orbital 

angular momentum of electrons onto the molecular 
axis) is fulfilled. Fulfillment of this condition in the 
general case can lead to several decomposition 
channels for the molecule that correspond to different 
states ML of the atoms X and Y. This results in 
different dipole moment functions of the molecule 

µ
XY

(R) for different decomposition channels. 

Subrange of the exchange interaction 

This subrange of internuclear separations is 
characterized by slight overlap of the electron shells 
of the interacting atoms, which results in the 
exchange of valence electrons. To find the wave 
function of these electrons, it is possible to use 
asymptotic methods.18 The two-electron molecular 
wave function in this case can be written as  

 1 1 2 2c cΨ = ψ + ψ , (8) 

where 

 1 1(1) (2)X Yψ = ϕ ϕ χ ,  2 2(2) (1)X Yψ = ϕ ϕ χ . (9) 

In Eq. (9) (1)Xϕ , (1)Yϕ  and (2)Xϕ , (2)Yϕ  are 

asymptotic coordinate wave functions of the first and 
second electrons located largely near the atomic cores 
X and Y. The explicit forms of the functions χ1 and 
χ2 with regard for the interaction of the electrons 
with each other and with foreign nuclei can be found 
in Ref. 18. 

The contribution of the exchange interaction to 
the dipole moment function (in a. u.) obtained by 
averaging the dipole moment operator with 
function (8) can be presented in the form 

 ( ) ( ) exp[ ( )]X Y
R B R R R

δµ = − β + β% , (10) 

where B(R) is the function weakly depending on R 
for the subrange of internuclear separations 

considered; (β
X

)
2
/2 and (β

Y

)
2
/2 are the ionization 

potentials of the atoms X and Y, and 

 δ = 2/β
X

 + 2/β
Y

 – 2/(β
X

 + β
Y

) + 1. (11) 

Note that the multipole interactions also 
contribute to the dipole moment function in this 
subrange. 

Model of the dipole moment function  

The dipole moment function of a diatomic 
molecule is modeled as a piecewise-continuous 
function consisting of three parts: dipole moment 
function in the subrange of small R in the form of 
polynomial (3), dipole moment function in the 
subrange of large R [Eqs. (6) and (10)], as well as 
dipole  moment  function in the intermediate subrange 
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In this model, the coefficients ai are determined 
using known values of the dipole moment function 
and its derivatives at the equilibrium internuclear 
separation in the molecule Re. As a result, the 
coefficients ai become some effective parameters, and 
they are the solution of a system of linear equations, 
which is found from the condition that the 
derivatives of the dipole moment function (3) at the 
point Re are equal to the derivatives of the dipole 
moment function in the vicinity of the equilibrium 
position of the molecule’s nuclei 
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where x = (R – Re)/Re; Mi are experimentally 
determined coefficients. The coefficients ai calculated 
in such a way allow the dipole moment function of 
the molecule to be specified in the range of small R, 
including the vicinity of the equilibrium internuclear 
separation. The number of coefficients ai is 
determined by the number of known coefficients Mi. 
 The dipole moment function in the range of 
large R can be represented as a sum of the multipole 
and exchange parts specified by Eqs. (6) and (10), 
where B(R) is considered as an effective parameter 
B0, whose value can be determined by fitting to the 
data of ab initio calculations. This form of the dipole 
moment function is a good approximation for the 
range of internuclear separations, where the electron 
shells of the interacting atoms overlap only slightly. 
 The dipole moment function in the intermediate 
range of internuclear separations is a lacing function 
and is specified by the five-order polynomial with 
respect to R. The coefficients of this polynomial bi 
are determined from the conditions of lacing the 
dipole moment functions at small and large R 
accurate to the second derivatives inclusive. Joining 
points in this work are chosen as follows: R1 ≈ 1.1Re 
and R2 ≈ 2Re. Selection of the joining points can be 
done with some arbitrariness, which does not 
significantly change the form of the dipole moment 
function.  

Calculation of the dipole moment 
functions of the CO and NO molecules 

According to the rules of electron terms 
correlation of a molecule and the atoms, into which the 
molecule decompose at R → ∞, the CO molecule in the 

ground electronic state 1 +Σ  decomposes into the atom 

C in the state 
2
P(ML = 0, ±1) and the atom O in the 

state 
3
P(ML = 0, ±1), while the NO molecule in the 

ground electronic state 2Π  decomposes into the atom 

N in the state 
4
S(ML = 0) and the atom O in the state 

3
P(ML = ±1). It follows herefrom that three 
decomposition channels are possible for the CO 
molecule, and two channels are possible for NO. In 
this connection, to find the parameter B0 by fitting 
of dipole moment function (12) in the range R ≥ R2 
to the data of ab initio calculations, it is necessary to 
use the dipole moment function averaged over the 
decomposition channels  

 µ
XY

(R) = C̄
XY

/R
4
, (14) 
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The model proposed above was used to construct 
the dipole moment functions of the CO and NO 
molecules averaged over their decomposition channels. 
The atomic parameters used in the calculation of the 
dipole moment functions are summarized in Table 1. 
Table 2 presents the values of Mi and the coefficients 
ai calculated using them along with the parameters of 

the polynomials bi, the coefficients B0 and C̄, as well 
as lacing points R1 and R2. For the CO molecule the 
parameter B0 was determined by the least-squares 
method from the data of ab initio calculations of the 
dipole moment function for R = 2.28, 2.38, and 
2.65 Å [Ref. 2]. For the NO molecule the available 
results of ab initio calculations of the dipole moment 
functions6,7 differ considerably. For this reason, in 
determining the parameter B0 for the NO molecule, 
we took the ab initio values of the dipole moment 
functions from Ref. 7 for R = 1.74, 1.95, and 2.39 Å 
corrected for a more accurate calculation from Ref. 6. 
The correction included matching of the peaks of the 
dipole moment functions from Refs. 6 and 7, which 
resulted in a shift of the above points by about 0.3 Å 
toward larger R. 

 

Table 1. Atomic parameters for calculation of the dipole moment functions  
of the CO and NO molecules, in a.u. 

Ñ (2P) O (3P) N (4S) 
Parameter 

ML = 0 ML = ±1 ML = 0 ML = ±1 ML = 0 

αzz(L, ML) 
Qzz(L, ML) 

9.9 [Ref. 19] 
1.42 

[Ref. 19] 

12.1 [Ref. 19]
–0.71 

[Ref. 19] 

6.1 [Ref. 19] 
–1.02 

[Ref. 19] 

5.0 [Ref. 19]
0.51 

[Ref. 19] 

7.3 [Ref. 19] 
0 

β 0.9097 [Ref. 20] 1.0336 [Ref. 20] 1.0005 
[Ref. 20] 
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Table 2. Parameters for calculation of the dipole moment 
functions of the CO and NO molecules 

Parameter CO ( 1 +Χ Σ ) NO ( 2Χ Π ) 

M0, D –0.122861 [Ref. 8] –0.16 [Ref. 11] 

M1, D 3.614784 [Ref. 8] 2.459 [Ref. 11] 
M2, D –0.031838 [Ref. 8] –2.563 [Ref. 11] 

M3, D –2.919004 [Ref. 8] –1.029 [Ref. 11] 
M4, D 4.214029 [Ref. 8] – 

a3, D ⋅ Å–3 –42.484258 –24.285928 

a4, D ⋅ Å –4 116.206827 53.470645 

a5, D ⋅ Å –5 –122.037160 –39.607344 

a6, D ⋅ Å –6 58.615302 9.908159 

a7, D ⋅ Å –7 –10.829630 – 

b0, D –32.540175 146.031407 

b1, D ⋅ Å –1 91.324444 –446.232204 

b2, D ⋅ Å –2 –107.446965 530.241421 

b3, D ⋅ Å –3 65.339643 –306.580916 

b4, D ⋅ Å –4 –19.721384 86.559755 

b5, D ⋅ Å –5 2.314705 –9.581589 

B0, D ⋅ Å –δ 152.649127 7.265985 

C̄, D ⋅ Å –4 0.134 2.226 
R1, Å 1.3 1.3 
R2, Å 2.4 2.2 

 

The calculated dipole moment functions of the 
CO and NO molecules are depicted in Figs. 1 and 2. 
As can be seen from the figures, the sign of these 
functions alternates (direction of the dipole moment) 
near their equilibrium internuclear separation, what 
just explains small values of the dipole moments of 
CO and NO at the point Re. The positive value of 
the dipole moment function in Figs. 1 and 2 
corresponds to the polarity C+O– and N+O–. The  
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Fig. 1. Dipole moment function of the CO molecule: this 
work (solid curve), Pade approximation 

13 (dotted curve), 
exponential form 

15 (dashed curve), approximation by a 
power series 

8 (dot-and-dash curve), ab initio calculation 

2 
(circles), ab initio calculation 

4 (squares). 

dipole moment functions calculated in this work 
agree well with their ab initio values from Ref. 2 for 
the CO molecule (0.85 < R < 2.65 Å) and from 
Ref. 6 for the NO molecule (0.83 < R < 1.79 Å). The 
dipole moment function of the CO molecule also agrees 
well with those specified in the form of the Pade 
approximation 

13 and in the exponential form 

15 in the 
whole range of R. 
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Fig. 2. Dipole moment function of the NO molecule: this 
work (solid curve), approximation by a power series 

11 (dot-
and-dash curve), ab initio calculation 

6 (circles), ab initio 
calculation 

7 (squares). 
 

Analysis of the curves in Figs. 1 and 2 allows us 
to determine the limits of applicability of the dipole 
moment function in the form (13) with the given 
number of the coefficients Mi and shows that the 
dipole moment functions for the CO [Ref. 4] and NO 
[Ref. 7] molecules are likely understated. 

 

Conclusion 

The dipole moment functions of the CO and NO 
molecules have been calculated within the framework 
of the semi-empiric approach. These functions have a 
physically correct asymptotic behavior at small and 
large internuclear separations and agree with the 
experimental ones near the equilibrium positions of 
the nuclei of these molecules. The dipole moment 
functions obtained correctly describe alternation of 
the dipole moment sign. We believe that these dipole 
moment functions of the CO and NO molecules are 
now the closest to the actual ones. 
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