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 In this paper I have theoretically investigated the statistical characteristics of fluctuations of 

the optical transfer function of the “turbulent atmosphere–telescope” optical system when recording 
an averaged image. Such statistical characteristics of the optical transfer function fluctuations as the 
mean value, variance and correlation functions are calculated. The results obtained enable one to 
assess the image deterioration due to the effect of the atmospheric turbulence and, also, to introduce 
the quantitative estimation for the concepts of “very long” and “very short” exposures. 

 
The joint action of the atmosphere and the optical 

system in forming an image of an incoherent source is 
considered traditionally as a random linear filtration, 
and the “atmosphere–optical instrument” system is 
characterized by the optical transfer function.1 It is 
known2–9 that the optical transfer function of the 
turbulent atmosphere depends essentially on the time 
of averaging (exposure time). The limiting cases of 
“very long”2–5

 and “very short”3,5
 exposures were 

studied extensively. The investigations of intensity 
fluctuations of optical radiation in the focal plane of 
a telescopic system depending on the time of averaging 
(exposure time) were carried out in Ref. 9. 

In this paper the statistical characteristics have 
been calculated of the optical transfer function of the 
turbulent atmosphere and the telescopic optical system 
at an arbitrary exposure time. 

An instantaneous value of the optical transfer 

function of the atmospheric turbulence and telescopic 
optical system can be written in the following form2–5: 

 M(p, t) = 

 ( )d ,

∞

−∞

= ∫ ∫ ρ ρU t U*(ρ + p, t) ( )ρK K*(ρ + p), (1) 

where ( ),ρU t  is the complex amplitude of the field 

at a point ρ at the receiving aperture at the moment 
t in time created by a point incoherent source located 
in the subject space; ( )ρK  is the pupil function of 

the receiving aperture; p is the spatial scale. 
Since the field ( ),ρU t  is a random value, because 

of fluctuations of the air dielectric constant, the 
optical transfer function M(p, t) turned out to be a 
random value varying in time. Therefore, in recording 
an object image using a detector with the finite 
response time (for example, photographing or visual 
observation) the averaging of the optical transfer 
function will occur. Thus the optical transfer function 
can be written in the form: 

 ( ) ( )
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1
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∆
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t

M t tM t
t

 (2)  

where ∆t is the time of averaging (exposure time). In 
view of the fact that the optical transfer function 

( ),∆pM t  in the general case is also a random value, 

then to describe it, the method of moments is used. 
In particular, we consider the following statistical 
characteristics: mean value, variance, and correlation 
functions of the optical  transfer function fluctuations. 

Mean value of the optical transfer function is 

obtained by averaging Eq. (2) over the ensemble of 
realizations of dielectric constant of the atmospheric air: 
 

 ( ) ( )
0

1
, d ,

∆

∆ = =
∆ ∫p p

t

M t t M t
t

  

0 –

1
= d d

t

t
t

∆ ∞

∞
∆ ∫ ∫ ∫ ρ Γ2(ρ, ρ  + p; t, t) ( )ρK K*(ρ + p), (3) 

where 

 Γ2(ρ, ρ  + p; t, t) = 〈U(ρ, t)U*(ρ  + p, t)〉 

is the function of mutual coherence of the optical wave 
field of the second order.10 

Let the optical wave be plane (for example, the 
star radiation), i.e., 

 ( ) ( )0, exp , ,= ψ  ρ ρU t U t  

where U0 is the optical wave amplitude; 

 ( ) ( ) ( ), , ,ψ = χ +ρ ρ ρt t iS t  

are the fluctuations of the complex phase of the optical 
wave; ( ),χ ρ t  describes the fluctuations of a logarithm 

of the optical wave amplitude; ( ),ρS t  denotes the 

phase fluctuations of the optical wave. As known,10 
( ),χ ρ t  and ( ),ρS t  in the applicability domain of the 
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method of smooth perturbations have normal laws of 
the probability distribution, then 

 ( ) ( )2

2 1 2 1 2 0 1 2 1 2

1
, ; , exp , – ,

2

 Γ = − −  
ρ ρ ρ ρt t U D t t  (4) 

where ( ),ρD t  is the space-time structure function of 

complex phase fluctuations of the plane optical wave.10 
Having substituted Eq. (4) into the Eq. (3) we 

obtain: 

 ( ),∆ =pM t  

 ( ) ( )2

0

1
exp d

2

∞

−∞

 = −   ∫ ∫ ρ ρU D p K K*(ρ + p),  (5) 

where ( ) ( ),0= pD p D  is the spatial structure function 

of the complex phase fluctuations of a plane optical 
wave at the spacing of observation points being equal 
to p. 

Hence it follows that ( ),∆pM t  does not depend 

on exposure time and is equal to the value of the optical 
transfer function at “infinitely” delays,2,3,5 i.e., 

 ( ) ( ) ( )
0

1
, lim d , .
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The variance of fluctuations of the optical transfer 
function can be written as follows: 

 ( ) ( ) ( ) 2
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,pM  (6) 

where 

 Γ4( ′ρ , ′ρ  + p; ′′ρ + ð, ′′ρ ; t′, t′′) = 

 = 〈U( ′ρ , t′)U*( ′ρ  + p, t′)U( ′′ρ  + p, t′′)U*( ′′ρ , t′′)〉 

is the fourth order coherence function of the optical 
wave.10 

Accepting the same assumptions as previously in 
deriving the function of the second order mutual 
coherence of the optical wave field and considering 

that ( )2
,χ ρ t << 1 (this condition is well fulfilled for 

the plane wave and the paths penetrating the entire 
thickness of the Earth’s atmosphere at zenith angles 
≤ 80°) we derive 

 Γ4( ′ρ , ′ρ  + p; ′′ρ + ð, ′′ρ ; t′, t′′) ≅  

 ≅ ( )4

0

1
exp ,0

2

− +
pU D D ( ′ρ  – ′′ρ  – p, t′ – t′′) + 

+ 
1
2 D( ′ρ  – ′′ρ  + p, t′ – t′′) – D( ′ρ  – ′′ρ , t′ – t′′) .




 (7) 

It turns out that ( )2
,σ ∆pM t  depends not only on 

the time of averaging, but also on the shape and 
dimensions of the entrance pupil of the telescopic 
system. Therefore, for the subsequent considerations 
it is required to set a specific type of the function of 
entrance pupil of the receiving aperture. Assume that 
a fluctuating wave is incident on the circular 
objective over an area SR = πR2, where R is the 
radius of the receiving aperture and the function of 
the pupil of the receiving aperture can be chosen in 
the form of the quadratic exponential function5,6: 

 ( ) 2

0 2

1
exp ,

2

 = − ρ 
 

ρK K
R

 (8) 

where K0 is the amplitude transmission of the 
telescope on the optical axis of the system. In this 

case, ( ) 2 2

0
0=

= π
p

pM U R  is the value of the mean 

optical transfer function at zero spatial frequency. 
When calculating the integral using one spatial 

variable (6) we derive a simple expression for the 
variance of the optical transfer function: 
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pD D(ρ  – p, t′ – t′′) +  

 + 
1
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– ( ) 2

.pM  (9) 

For telescopic systems of small dimensions 

(R < L0, where L0 is the outer scale of the atmospheric 
turbulence) using the Taylor hypothesis of “freezing,” 
the structural function of complex phase can be 
written in the form: 

 ( ) 2 2
, 0.73D t C k hε= −ρ ρ Vt

5/3
, 

where k = 2π/λ, λ is the radiation wavelength in the 

free space; C 

2

ε is the ground value of the structure 
parameter of fluctuations of the dielectric constant of 

the turbulent atmosphere; ( )2 2

0

d ,

∞
−
ε ε= θ∫h C xC x  is the 

effective optical thickness of the active layer of the 

atmospheric turbulence; C 

2

ε(x, θ) is the altitude 
profile of the structure parameter of the fluctuations 
of the dielectric constant of the turbulent atmosphere 
depending on the zenith angle θ; V is the wind 
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velocity in the direction perpendicular to the 
direction of light propagation. 

Asymptotic analysis of Eq. (9) has shown that in 
the region of small spatial scales: p << D–3/5(R)R 
and p << R the variance of fluctuations of the optical 
transfer function is of the form: 

 ( ) ( )
2

2 2 4 4 4

0 0, ,

∆   σ ∆ ≅ π    
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V t p
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 (10) 

where 
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In the intermediate region of spatial scales:  
D–3/5(R)R << p << R (which takes place only in the 
case when the structure function of the fluctuations 
of the complex phase over the aperture size is large as 

compared with unity), the variance of fluctuations of 
the optical transfer function equals: 
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And, finally, for large spatial scales (p > R) 

( )2
, 0σ ∆ ≅pM t , the variance of the optical transfer 

function is small because of the presence of the 

following factor: 
2

1
exp .

2

  −  
   

p

R
 

From the results obtained it is concluded that 
with the increase of exposure time the fluctuations 

( ),∆pM t  decrease and at ∆t >> ∆t0 = R/V they 

disappear at all. Figure 1 shows the dependence of 
the ratio of normalized variance of fluctuations of the 

optical transfer function ( ) ( )2 2
, , 0σ ∆ σp pM Mt  on the 

normalized time of averaging ∆t/∆t0. 
Curve 1 was constructed for the region of small 

spatial scales (p << D–3/5(R)R and p << R), i.e., 
when 

 ( ) ( ) ( ) ( )2 2 1

0, , 0 0
−σ ∆ σ ≅ ∆ ∆p pM Mt f t t f , 

and curve 2 was constructed for the intermediate 
region of spatial scales (D–3/5(R)R << p << R): 

 ( ) ( ) ( ) ( )2 2 1

0, , 0 / 0 .−σ ∆ σ ≅ ϕ ∆ ∆ ϕp pM Mt t t  

The behavior of these curves shows that the 

typical scale of variation of the variance ( )2
,σ ∆pM t  

depending on the time of averaging ∆t is the ratio of 
the aperture size to the module of the mean wind 
velocity (∆t0). Thus, the value of time of averaging 
∆t0 can be considered a quantitative criterion of 
notions “very long” (∆t >> ∆t0) and “very short” 
(∆t << ∆t0) exposures. 

 

 

 
Fig. 1. The behavior of the normalized variance of 
fluctuations of the optical transfer function depending on 
the normalized time of averaging under different propagation 
conditions: at D(R) < 1 (1); at D(R) > 1 (2). 

 

To determine the statistical relation of fluctuations 

of the optical transfer function at different spatial 
scales we consider the correlation function of fluctuations 
of the optical transfer function at different spatial scales: 
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The integral expression for the correlation 

function has the structure similar to that of Eq. (9), 
therefore the asymptotic analysis can easily be 
conducted by the same method as for the variance of 
the optical transfer function. 

In the region of small spatial scales: p1,2 << R 
and p1,2 << D–3/5(R)R almost complete correlation of 
fluctuations takes place on all scales 
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In the intermediate region (D–3/5(R)R << p1,2 <<  
<< R) the correlation decreases by the exponential 
function: 

 ( )
5 3

1 2

1 2

cor

, ; exp ,Mb t
p

  −
 ∆ ≅ −  
   

p p
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where pcor = 2D–3/5(R)R, i.e., the region of 
correlation of fluctuations of the ( ),∆pM t  turned 

out to be limited by the speckle size. It should be 
noted that the normalized correlation function of 
fluctuations of the optical transfer function at different 
spatial frequencies practically does not depend on 
time of averaging. 
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Of practical interest is the possibility of 
determining the ( ),∆pM t using one time of averaging 

by statistical characteristics of fluctuations of the 
optical transfer function obtained for another time of 
averaging. For this case we consider the correlation 
function of the form: 

 ( ) ( ) ( ) ( ) 2

1 2 1 2; , , , ,MB t t M t M t M
∗∆ ∆ = ∆ ∆ −p p p p  

which characterizes the statistical relation of 
fluctuations of the optical transfer function averaged 
during the exposure time ∆t, with fluctuations of the 

( ),∆pM t  with the exposure times ∆t1 and ∆t2. 

In the case when ∆t1 << ∆t0, and ∆t2 = ∆t1 + ∆t 
it can be shown that the normalized correlation 
function 
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has the following form in the region of small spatial 
scales p (p << R and p << D–3/5(R)R): 
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in the intermediate area of variation of the spatial scale 
ð (D–3/5(R)R << p << R): 
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Consequently, the fluctuation correlation of the 
( ),∆pM t  with different times of averaging decreases 

with increasing time ∆t, in this case the typical scale 
of the correlation function is the value ∆t0 (time of 
transport of mean wind velocity of turbulent 
inhomogeneities at a distance being equal to the 
typical scale of the aperture). 

One of the standard characteristics of the image 
quality, obtained with an optical system, is the integral 
resolution. The integral resolution of the optical 
system, at a finite duration of the averaging, can be 
written in the form3,6–8 

 ( ) ( ) ( )
0

1
d d , .

∆ ∞

−∞

ℜ ∆ = ℜ ∆ = ∆
∆ ∫ ∫ ∫ p p

t

t t t M t
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 (12) 

The mean value of the integral resolution, 
obtained by averaging Eq. (12) over the ensemble of 
realizations of fluctuations of the atmospheric 

dielectric constant as well as the mean value of the 
optical transfer function (5) does not depend on the 
time of averaging. For the optical system, which 
pupil function is described by Eq. (8), the mean 
value of the integral resolution is of the form 
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The dependence of the mean value of the 
integral resolution ℜ  on the atmospheric turbulence 

parameters is characterized by a single parameter –
structure function of the fluctuations of the complex 
phase D(R), calculated for the aperture size. The 
increase in the structure function of the complex 
phase fluctuations D(R) results in a decrease of the 
resolution of the optical system. 

In conclusion, it should be noted that all  
the results, obtained for the pupil function of the 
form (8), can also be obtained for the aperture with a 
sharp edge. In this case the discrepancy of the results 
will be observed only in the area of large spatial 
scales p > R, being of insignificant practical interest. 
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