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The paper describes a possibility of using lidar data for ozone concentration profile retrieval 
based on the neural network method. The capabilities of this method for profile retrieval at different 
schemes of the neural network learning, as well as the solution algorithm are considered. The results 
of retrieving the ozone concentration profile from lidar sensing data are presented. 

 

Introduction 
 

In the lidar sensing, the following methods are 
commonly used for retrieving vertical distribution of 
the gas concentration from the lidar data: difference 
schemes, spline functions, Tikhonov regularization, 
optimal parameterization, and others.1–6 Each of these 
methods has some limitations (fail to retrieve the 
concentration profile in the troposphere or provide a 
sufficient accuracy) at the data processing in the 
automatic mode (routine measurements). 

Our survey of the methods for processing lidar 

data has shown that the neural network (NN) method 
has not been earlier used for solving inverse problems 
of the laser sensing. Application of the NN method is 
now possible due to the modern computers and a wealth 
of data on ozone concentration profiles measured with 
lidars and radiosondes. 

 

Formulation of the problem 
 

Determination of the vertical profile of gas content 
from lidar echo signals received by a two-wave lidar 
reduces to differentiation of the function v(z) [Ref. 6]: 
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where Non, Noff are the echo signals from the height z 
at the wavelengths λon and λoff; βon, βoff are the 
backscattering coefficients; τon, τoff are the total 
optical depths of molecular scattering and aerosol 
extinction at the corresponding wavelengths. 

In Eq. (1) it is assumed that Non, Noff are free of 
background atmospheric radiation. The function Ψ(z) 

is specified as model or determined from an 

independent experiment. If a pulse falls within a 

narrow spectral range occupied by some rotational-
vibrational line,  the  function Ψ(z) can be taken zero. 

The gas concentration is determined from the 

equation 
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where ϕ(z) is the regularized analog of the derivative 
v ′(z) of v(z); ∆K = Kon – Koff is the differential 
absorption cross section of the gas under study. 

As is well-known,7 differentiation of experimental 
information is classified as an ill-posed problem. The 
ill-posedness shows itself in the solution instability. 

8,9 
This means that small errors in initial data can lead 
to large errors in solution (the solution becomes 

unsteady) and, in some cases, to appearance of negative 
values for gas concentrations, which physically is a 
nonsense. 

Just such a situation arises when applying the 
often used finite difference method for differentiation 
of the function v(z). Before the differentiation 

procedure, the received signals (or the log signal ratio) 

are smoothed using various moving-average filters, 
polynomials, etc.10 However, though these methods 
are computationally fast, they have some serious 
disadvantages. First, they are approximate, because 
they do not give an unambiguous answer to the 

question what is the efficiency of smoothing (selection 
between undersmoothing and oversmoothing). Second, 
each lidar signal, being unique, requires a fitting of 
smoothing parameters, which does not allow the 

profiles obtained at different time to be then 
unambiguously interpreted. Third, the accuracy of 
the gas concentration profile retrieval can be 
estimated only approximately. 

 

Neural network method 
 
Describe a solution of this problem using the 

neural network method. The neural network is a set 
of interrelated simple neuron elements, and it is 
capable to give certain output information in response 
to the input perturbation. Mathematically, the neuron 
model can be presented as follows 

11: 
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where y is the output neuron signal; f(g) is the neuron 
activation function; wi is the weighting coefficient of 
the ith input; w0 is the initial state (excitation) of 
neuron; xi are input signals, i = 1, 2, …, n are numbers 
of neuron inputs.  

The neuron can be also presented as a scheme 

depicted in Fig. 1. 

 

 
 
 
 
 
 
 

 

 Fig. 1. Formal neuron model. 

 

The sigmoid function  
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serves as an activation function. The parameter à 
determines a slope of the sigmoid function plotted in 
Fig. 2. 
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 Fig. 2. Activation function. 

 

The slope of the sigmoid function determines the 
neuron capability of distinguishing input signals. The 
steeper  the  slope, the lower is the neuron capability. 

There are different types of neural networks. The 
use of a particular type depends on the problem to be 
solved. For example, pattern recognition involves 
Hamming and Hopfield neural networks, while in 
classification problems the Kohanen network is used. 
Fully connected multilayer network is best suited for 
solution of the inverse problem of lidar sensing. An 
example of a  three-layer  network is shown in Fig. 3. 

To solve the problem formulated, the profile of the 
optical depth (1) was used as input for this network, 
while the concentration profile was its output. The 
profiles are reduced to the same vertical grid. 

 
 
 
 
 
 
 
 
 
 

 Fig. 3. Fully connected three-layer neural network.  
 

In order for the network to solve a problem, it 

must be learned. There are self-learning neural networks 
and networks with a trainer. Learning with a trainer 
assumes that for every input vector there is a goal 
vector, which is just the needed output. Together they 
are called a training pair. Usually, the network is 
trained with a number of such pairs. After setting 

some input vector, the network output is calculated 
and compared with the corresponding goal vector, the 

difference (error) is returned to the network through a 
feedback, and the weights are changed in accordance 
with the algorithm aimed at minimization of the 

error. The vectors of the training set are sequentially 
inputted, the errors are calculated, and the weights 
are fitted for every vector until the error all over the 
training set achieves some acceptable low level. 

There are several methods for learning the neural 
network11: 

– deterministic learning method performing step-
by-step correction of weights based on their current 
values and network outputs; 

– stochastic learning method performing 

pseudorandom changes of the weights and saving 
those, which improve the results; 

– heuristic learning algorithms, including the 
genetic search algorithm modeling the processes of 
natural evolution and allowing selection of the best 
solution from a variety (population). 

The deterministic methods include the error back-
propagation algorithm; stochastic methods involve the 
Boltzmann machine and the Cauchy machine. 

To solve this problem, we have selected the error 
back-propagation algorithm, which allows rather fast 
learning of the neural network. The rate of learning 
is significant here, since it is necessary to re-learn the 
network as the conditions of modeling of the training 
pair change, for example, when solving the inverse 
problem for another gas. The stochastic algorithms, 
though allow overcoming the problem of local minima 
in optimization of solution and always converge to 
the global minimum, have too low rate of the 
convergence.  

The error back-propagation algorithm11
 is the 

iteration gradient algorithm. The learning assumes 
minimization of the network error, which is determined 
by the least-square method: 

 2

1

1
( ) ( ( ) ) ,

2

p

j j

j

E w y w d
=

= −∑  (5) 

where p is the number of neurons in the output layer; 
y is the current output of the jth neuron; d is the 
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desirable output of the jth neuron (the last layer [see 
Fig. 3] corresponding to the ozone concentration at 
the height z); w are the weighting coefficients. 

Neural network learning is performed by the 
gradient descent method, that is, the weight is changed 
at each iteration as follows: 

 ( 1) ( )ij ij
ij

E
w t w t h

w

∂+ = −
∂

,  (6) 

where h is the parameter determining the learning rate. 
We have selected a two-layer fully connected 

neural network with the vertical profiles of the optical 
depth as inputs and the gas concentration profiles as 
outputs (both input and output profiles are reduced 
to the same vertical grid). The number of inputs of 
every neuron in the network is equal to the number 
of elements in the vertical grid (vertical sensing range 
was 0–35 km with the strobe of 500 m, 70 dots).  

As the examples for learning, we took the vertical 
profiles of the ozone concentration and the temperature 
profiles obtained by distorting the model profile 

12 
using a random number sensor. The ozone absorption 
coefficients for every height at a wavelength λon = 
= 308 nm were calculated as13: 

 2

ozone( )K T A BT CT= + +  [cm–1 ⋅ atm–1],  (7) 

where Ò is the temperature in the layer z; the model 
coefficients are À = 1.32, B = 3.45 ⋅ 10–3, C = 2.18 ⋅ 10–5. 

The molecular and aerosol components of the 
optical depth were calculated by atmospheric models 
and kept unchanged during the calculation of different 
ozone concentration profiles. 

For the neural network to be capable to retrieve 
the gas concentration in the troposphere from 
stratospheric optical data (based on the training pairs 
“optical depth–concentration profile”), additional 
training pairs were created, in which the concentration 
profile was the same, but the optical depth for the 
troposphere was set equal to –1 sequentially for the 
height ranges [z1], [z1, z2],..., [z1, zm

]. A total of m 
pairs were created for each concentration profile, 
where zm

 is the lowest stratospheric height (12 km in 
our case). All the training samples were reduced to 
the interval [0,1]. 

We have realized a program for training the neural 
network by the error back-propagation method and 
checking its operation against the data not included 
in the training sample. To do this, an optical depth is 
simulated for some model ozone concentration profile, 
then the neural network retrieves the ozone profile 
from the optical depth, the result is compared with 
the initial data, and the relative error is calculated. 
 

Simulated results 
 
Simulation was carried out in two stages. At the 

first stage, all 70 dots of the optical depth profile 
(0–35 km height range) at the 5-% noise were input, 
and the retrieved ozone concentration profile was 
compared with the model one (Fig. 4).  
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Fig. 4. Retrieval of the ozone concentration profile: model (1) 
and retrieved (2) profiles. 

 
Figure 5 shows the relative error of retrieval of 

the ozone concentration profile at 5-% noise. 
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Fig. 5. Relative error of retrieval of the ozone concentration 
profile. 

 
Figure 6 depicts the relative error of retrieval of 

the ozone profile at 15-% noise and the same 
measurement conditions. Comparison of Figs. 5 and 6 
shows that a threefold increase of the measurement 
error (from 5 to 15%) does not cause a significant 
growth of the error in the ozone concentration profile 
retrieval. In our opinion, this is connected with the 
fact that the determined coefficients of the neural 
network weakly react to random changes in the 
optical depth (are not present in learning). 
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Fig. 6. Relative error of retrieval of the ozone concentration 
profile from the optical depth in the range of 0–35 km at 
15-% noise. 
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At the second stage, only stratospheric 

measurements (12–35 km) are used for the ozone 
concentration retrieval in the entire range from 0 to 
35 km. This model experiment is close to the actual 
stratospheric conditions. The results obtained at the 
second stage are shown in Figs. 7 and 8. Figure 7 
compares the retrieved and model ozone concentration 
profiles, and Fig. 8 depicts the relative error of 
retrieval. 
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Fig. 7. Ozone concentration profile retrieved in the entire 
range from the optical depth in the range of 12–35 km at 5-
% noise: model (1) and retrieved (2) profiles. 
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Fig. 8. Relative error of retrieval of the ozone concentration 
profile from the optical depth in the range of 12–35 km at 
5-% noise. 

Note that the error of retrieval at the first and 
second stages is almost the same. This is a property 
of the methods based on the use of statistical 
information, which is accumulated in this model in 
the form of model coefficients. 

 

Conclusion 
 

The method of neural networks considered in this 
paper allows the ozone concentration profile retrieval 
from lidar data. The error of retrieval is almost 

insensitive to the experimental error up to 30%, it 
ranges nearby 10% and depends on the size and quality 
of the training sample. The material reported here 
form the basis for further investigation of the 

capabilities of the neural network method as applied 
to the lidar sensing problems. 
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