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Within the framework of the line wing theory, the line shape parameters related to the 

intermolecular interaction potential are obtained from a comparison between the calculated and 
measured absorption coefficients. At the same time, the relations for the characteristics considered as 
parameters in the line wing theory can be obtained from the general expression for the absorption 
coefficient in terms of the Möller operators taking into account the line mixing effect. These relations 
have a simple form in the case of no line mixing and can be easily estimated. Their comparison with 
the values obtained from approximation of the experimental data on the absorption coefficient, which 
implicitly include the line mixing, is indicative of its inessential role in the case of the 4.3 µm CO2 
band considered in this paper. 

 

Introduction 
 

The absorption coefficient in the transmission 
microwindows and wings of the ÑÎ2 absorption band 
at 4.3 µm has been thoroughly studied experimentally 
at different temperatures in different buffer gases 
(see, e.g., Refs. 1–4). The temperature and frequency 
dependences of the absorption coefficient found 
experimentally are interpreted theoretically as being 
caused by the absorption in the far wings of spectral 
lines. However, in spite of the general agreement, 
different theoretical approaches give preference to 
one or another physical mechanisms of absorption in 
line wings. Two explanations can be separated out 
from those available in the literature. In some papers, 
(see, e.g., Refs. 2–6) the mixing of quantum states is 
given the main role in the formation of the 
absorption in line wings. Other approaches, in 
particular, the quasistatic 

7–9 and asymptotic 

10,11 
theories of the line wings assume that the 
intermolecular interaction is decisive in the formation 
of the line shape at large frequency shifts with only 
insignificant role of line mixing. 

The detailed analysis of arguments in favor of 
the concept on the major role of mixing of quantum 
states for the line periphery was carried out in 
Ref. 12, and it suggested their theoretical weakness. 
Sequential calculation of the absorption coefficients 
taking into account the line mixing effect, for 
example, for the ÑÎ2 band at 4.3 µm could be the 
final evidence of the limited role of the line mixing 
in the far wings at normal pressure, but it is not 
accomplished yet because of its awkwardness. Taking 
the line mixing effect into account for a couple of 
water vapor absorption lines near 0.8 µm (see 
Ref. 13) showed that its contribution to atmospheric 
absorption between the mixed lines did not exceed 
3%. The calculations of the absorption coefficient 
made in Refs. 7–11 neglecting the line mixing agree 

well with the experimental data, but include the 
parameters of intermolecular interaction potential as 
fitting parameters.  

Recently, we have obtained a general equation 
for the absorption coefficient in the line wing 
through the Möller operators with regard for the line 
mixing. The closed equations including the Möller 
operators follow from the general equations for those 
characteristics, which are declared as parameters Da 
and Ca in the asymptotic theory of line wings. The 
equations for Da and Ca in the case of no line mixing 
have a rather simple form and can be readily 
estimated. Comparison of these parameters with the 
values obtained from approximation of the 
experimental values of the absorption coefficient, 
which should implicitly account for the effect of line 
mixing, if any, is indicative of only insignificant role 
of the line mixing in the experimental situations 
considered. 

 

1. Equation for the absorption 
coefficient 

 

The coefficient of absorption of radiation at the 
frequency ω by a molecule À in the binary 
approximation and at the classical motion of the 
centers of gravity is traditionally written in the 
following form (accurate to a constant factor):  

 ( )
,

Re Tr Re .
x n n nn

n n

PQ P Q′ ′
′

κ ω = =∑   (1) 

The equation for Q involves the following 
characteristics: 

 1 2 3( ) ( ) ( ) ( , ; )H H x H y H q U x y q= + + +  

is the complete quantum Hamiltonian of the problem; 
H1(x) is the Hamiltonian of an active molecule A; 
H2(y) is the Hamiltonian of a buffer molecule B; 
H3(q) is the Hamiltonian of motion of the centers of 
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gravity; U(x, y, q) is the potential of interaction of 
the active molecule A with B. In Eq. (1) P is the 
dipole moment of the active (interacting with the 
field) molecule A; Tr

x
 is the spur operation with 

respect to the intramolecular variables x of the 
molecule À; |m〉 are the eigenfunctions of the 
Hamiltonian H1(x) of the active molecule A; 
(…)mm′ = 〈m| … |m′〉 are matrix elements with the 
eigenfunctions of H1(x); S(t) is the evolution 
operator, which is a solution of the Schrödinger 
equation for the molecule A interacting with the 
buffer molecule B (t  is time). 

For 
nn

Q ′  the kinetic equation is presented in 
Section 3. 

The equation equivalent to Eq. (1) for the 
absorption coefficient in the superoperator 
representation has the following form: 

 ( )
( )

^κ ω = ρ ε →
π ω + ε −

1 1
ImTr , 0P P

i L

,  (2) 

where 

 [ ]
^

=
h

1
, ,LW H W   (3) 

^
L  is the superoperator corresponding to the 

Hamiltonian H; ^
ω + ε −

1

( )i L

at ε → 0 is the so-

called resolvent operator; W in Eq. (3) is an 
arbitrary operator. 
 

2. State mixing in the resolvent 
method 

 

In the approximation of factorization of the 
density matrix  

 ( ) ( ) ( ) ( )( )1 1 2 exp /R V q kTρ ≅ ρ = ρ ρ − ,  (4) 

where ( ) ( )1 2
,ρ ρ are the density matrices corresponding 

to H1, H2; and V is the potential describing the 
motion of the centers of gravity of the molecules, the 
equation for the absorption coefficient (2) can be 
written as (see, for example, Ref. 14) 

 ( ) ( )^

^ ^

 
 κ ω = − + 〈 〉 ρ
 π ω − ω − 

1

1

1 1

1 1 1
ImTr 1 .P M P

L L

 (5) 

In Eq. (5) 
^
M  is the superoperator including the 

interaction of the molecules in this representation: 

 
^

′′ ′ ′ ′ ′ αα α α α
′αα

〈 〉 =∑ , ; ,
.b a b aM M R    (6) 

The subscripts a and b enumerate eigenstates of the 
Hamiltonian H1, while the subscripts α, α′  enumerate 
the eigenstates of H2 + H3. 

The absorption coefficient (5) can be also 
written as  

 ( ) ( )
^ ^κ ω = − ρ

π ω − − 〈 〉

1

1

1

1 1
ImTr .

c

P P

L M

  (7) 

The operator 
^

cM  is connected with 
^
M  as 

follows:  

 
^ ^

^ −
〈 〉 = 〈 〉

+ 〈 〉 ω − 1
1

1
.

1 ( )
cM M

M L

 (8) 

If the operator 
^ ^

ω − − 〈 〉1 cL M  turns out diagonal 

in the chosen representation a,  b, and Zba(ω) are its 
eigenvalues, then 

 ( ) ( ) ( )κ ω = ρ σ ω∑
1 2

,

| | ,ab abb

a b

P   (9) 

where 

  ( )
( ) ( )

′′
σ ω =

π ′ ′′+2 2

1
,ab

ab

ab ab

Z

Z Z

  (10) 

σba(ω) is the line profile; Sab = ρb

(1)
 |Pab|

2 is the line 
strength, and Eq. (9) is the absorption coefficient in 
the approximation of isolated lines.  

Let now the operator ω – L
^

1 – 〈M
^

c〉  be 
nondiagonal in the representation a, b, and N is the 
diagonalizing matrix. Then 

( ) ( )
^ ^κ ω = − ρ

π ω − − 〈 〉

1
1

1

1 1
ImTr .

c

P NN NN P

L M

 (11) 

After transition to matrix elements, the equation for 
the absorption coefficient acquires the form 

 ( ) ( )( )−
′ ′ ′ ′ ′′ ′′

′′ ′′′ ′
κ ω = ρ∑

11
, ,

1
.ab ba b c b c b c

b c
b c

P N N P
Z

  (12) 

After regrouping of the terms, this equation can 
be reduced to the form (9), but the line strength 
proves to be a combination of elements with different 
a, b, just which is called line or state mixing. 

 

 

3. State mixing in the method of 
kinetic equation 

 

In the case of large shifted frequencies  

 ′ ′∆ω ≡ ω − ω >>γ
nn nn

  (13) 

(γ is the halfwidth) within the asymptotic theory of 
line wings, we obtain the kinetic equation for Q  
(see, for example, Ref. 15): 

 ( ) ( ) ( )
^

′ ′ ′ ′′
′

 ω − ω + ρ = ω − ω  
 

21
,

nn nn nn nnn

nn

i Q P YQ   (14) 

where Y
^
 is the relaxation superoperator. Sequential 

solution of this equation for the binary problem on 
the interaction between the active and buffer 
molecules with the classical motion of the centers of 
gravity allows the absorption coefficient to be 
written as  
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where ∗
++Ω Ω% %

,  are the Möller operators connecting 

the initial and final states in the process of the 
molecular interaction 

16; n, n′ are the eigenstates of 

( ) ( )+ +1 2( ) ( , [ ])H x H y U x y tr  that is the Hamiltonian 

of the binary problem at the classical motion of the 
centers of gravity (n → jν); α, α′  are eigenstates of 
H2(y) that is the Hamiltonian of the buffer molecule; 
r(t) is the vector connecting the centers of gravity. 
 After the approximations including 
approximation of the trajectory of the molecules by a 
straight line in the vicinity of a stationary point and 
approximation of the repulsive branch of the 
quantum potential of the intermolecular interaction 
in a limited range of distances by a function inversely 
proportional to the distance, we introduce the 
designation D for a certain combination of the matrix 
elements:  
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   (16) 

In Eqs. (15) and (16), V is the classical 
potential describing  the motion of the center of 
gravity of the interacting molecules; 

 
′

− =
2 2

0

min( ),
2 2

m m
V

v v

r   

v0, v′ are the initial velocity of the center of gravity 
and the velocity at the point rmin that is the point of 
maximum closeness of the molecules on the classical 
trajectory; Nm is the number of molecules in a unit 
volume. The rest part corresponding to the quantum 
problem of interaction of the two molecules includes 
the matrix elements of the Möller and dipole moment 
operators. They may be nondiagonal that corresponds 
to the presence of quantum states mixing. 

In the absence of mixing  

 ( ) 12 3
1 2 1 2calc (32 ) .a

m
D a mm m m N C

−= π +    (17) 

In the theory of line wings, the quantum part of 
the equation for the absorption coefficient denoted by 
Demp can be found from a comparison of the 
calculated and measured absorption coefficients. The 
comparison of the parameters D estimated 
theoretically and obtained experimentally allows one 
to assess the role of mixing for particular molecules 
in certain spectral ranges.  

 

4. Equation for the absorption  
coefficient in the theory of line wings  

 

Further in the calculations the parameter D is 
assumed to be a constant Demp, and it is sought along 
with the constants determining the quantum 
potential of the intermolecular interaction from a 
comparison of the experimental and calculated values 
of the absorption coefficients: 
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where 
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, ,

a

s as a s
a

s

C
r D D= = γ

ω − ω
 (19) 

γs is the line halfwidth. In the calculations, the 
profile of an isolated line is a piecewise-continuous 
function, each part of which corresponds to some 
value of a:  
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  (20) 

The profile for the lines of the ÑÎ2 band at 
4.3 µm in the case of self-broadening is shown in 
Fig. 1. The estimate Dcalc a and its comparison with 
Demp as allow us to judge on the degree of mixing. In 
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Fig. 2 for the wing of the 4.3 µm band the values of 
the parameters Da are depicted for the following 
mixtures ÑÎ2–ÑÎ2 (Cemp 5 = 6.5906, 
Demp 5 = 0.1847, Cemp 8 = 6.722, Demp 8 = 0.011222, 
Cemp 16 = 5.0368, Demp 16 = 0.00551) and ÑÎ2–N2 
(Cemp 5 = 5.4848, Demp 5 = 0.25, Cemp 14 = 4.8582, 
Demp 14 = 0.0062, Cemp 10 = 5.8922, Demp 10 = 0.0011).  
 

0 20 40 60 80 100 

κ16 
κ8 

κ5 

κ Lor 

κ sum 

κ 

∆ω, cm–1 
 

Fig. 1. The combined profile for the CO2 band at 4.3 µm 
under self-broadening. 
 

In estimating Dcalc a, it should be kept in mind 
that rs in Eq. (19) is measured in Å. Then Demp a is 
believed the same for all lines, and, because Demp as is 
connected with the halfwidth γs [see  Eq. (19)], 
Demp as has the corresponding limits of variability. 
For ÑÎ2–ÑÎ2 we have γs ∼  0.12–0.06 and for ÑÎ2–
N2 γs ∼  0.1–0.06 in the 4.3 µm band at normal 
temperature.  
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CO2–CO2,  a = 5 
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Fig. 2. Comparison of Dcalc, Eq. (19), estimated in the 
absence of mixing and Demp obtained experimentally for the 
wing of the CO2 band at 4.3 µm. 

 
The parameters D shown in Fig. 2 prove to be 

close to the diagonal Dcalc = Demp, which is indicative 
of an insignificant role of mixing in forming the line 
wings in the case under consideration. The constants 
corresponding to the near wing [D5(CO2 – CO2), 
D5(CO2 – N2)] are somewhat farther from the 
diagonal Dcalc = Demp, which, in principle, may 
indicate that the role of mixing increases when closer 
to the line center. This also follows from the 

theoretical reasoning, since mixing is the effect that 
manifests itself at close-to-resonance frequencies. 

 

Conclusions 
 

The approximate consideration of the classical 
problem of motion of the centers of gravity allows 
separation of the function including the classical 
parameters as a factor in the general equation for the 
absorption coefficient. The rest part corresponding to 
the quantum problem of the interaction of two 
molecules includes the matrix elements of the Möller 
and dipole moment operators. They may be 
nondiagonal that corresponds to the presence of 
mixing of quantum states. In the absence of mixing, 
this part can be readily estimated.  

In the theory of line wings, the quantum part of 
the equation for the absorption coefficient is assumed 
a parameter Demp, which is determined from a 
comparison of the calculated and measured absorption 
coefficient values. The comparison of the estimated 
Dcalc and the experimentally obtained Demp parameters 
allows us to assess the role of mixing for particular 
molecules in certain spectral ranges. In the case of 
the ÑÎ2 band at 4.3 µm, the estimated and measured 
parameters D turn out to be close, which is indicative 
of only insignificant role of the state mixing. 
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