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An original methodology and algorithms for spatial prediction of atmospheric parameters in 
the mesoscale region based on the use of Kalman filtering and the generalized dynamic-stochastic 
model constructed based on the two-dimensional equation of mesoscale diffusion are considered. The 
results of statistical assessment of the quality of the algorithms proposed are discussed as applied to 
the problem of spatial prediction of mesoscale temperature and wind fields. 

 

Introduction 
Among numerous problems of the modern 

mesometeorology, an important place is occupied by 
the problem of assessment of parameters of the 
atmosphere over the territory not covered by the data 
of aerological measurements in neighboring regions. 
Essentially, it is the procedure of spatial prediction 
(extrapolation) of meteorological fields in mesoscale 
regions. The results of such a prediction are used, in 
particular, for estimation of the spatial spread of 
technogenic pollutants to short (100−200 km) 
distances, as well as for meteorological provision of 
army during local warfare. 

As known, for a long time the problem of 
spatial prediction was solved within the framework 
of objective analysis of meteorological fields carried 
out based on the method of optimal interpolation. 

1,2 
But in recent years, in connection with the increasing 
amount of meteorological information, the traditional 
procedure of objective analysis has been replaced by 
the data assimilation procedure. The data assimilation 
procedure is usually understood as taking into 
account both the measurements and the prediction by 
the chosen model of the atmosphere. As a model of 
the atmosphere, the hydrodynamic model being a set 
of fluid dynamics equations is usually used. The data 
assimilation procedure is based on the dynamic-
stochastic approach with the use of the Kalman 
filtering theory. 

3−9 However, application of this 
model to spatial prediction of mesometeorological 
fields faces significant difficulties. These are: 

– impossibility of specifying the initial fields of 
meteorological parameters over the territory not 
covered by observations; 

– difficulty of specifying the boundary 
conditions at the open side boundaries for 
hydrodynamic simulation of mesoscale processes; 

– difficulty of correct solution (under the 
conditions of zonal-mean west-east transport) of the 

problem of extrapolation of the meteorological field 
to the territory lying to the west from the region 
covered by aerological information. 

In addition, the use of the Kalman filter in the 
data assimilation procedure including modern fluid-
dynamics models faces difficulties in its practical 
implementation because of the high order of 
covariance matrices of estimation and prediction 
errors involved in the calculations. 

5,7 This is caused 
by the fact that the state vector includes the entire 
set of the weather parameters to be estimated on all 
standard isobaric surfaces and at all nodes of the 
specified regular grid. The number of parameters in 
the state vector may achieve several hundreds. 

4 The 
high order of the state vector and the covariance 
matrix of estimation errors leads to difficulties in 
specifying their initial values, which, in its turn, 
lowers the quality of the filtering algorithm.  

This paper is the extended version of our 
previous publication (Ref. 10). Taking into account 
the above difficulties, we propose a simpler approach 
to the spatial extrapolation. This approach is also 
based on the Kalman filtering algorithm, but as a 
mathematical model we took the system of first-order 
stochastic equations, describing the dynamics of the 
atmospheric state parameters in the simplified form.  
 It is assumed that each point, to which the 
results of observation are extrapolated, can be 
considered independently. This is caused by the fact 
that the information about the values of a weather 
parameter at each of the extrapolation points results 
from assimilation of the same measurement results, 
and the information about relations between the 
extrapolation points gives no new data to the 
assimilation system. Therefore, the Kalman filter of a 
higher dimensionality, whose state vector includes 
the values of a weather parameter at all measurement 
and extrapolation points, can be replaced by a set of 
filters of smaller dimension. For every extrapolation 
point, its own filter is constructed.  
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The state vector for each filter should include 
the values of a weather parameter at the 
measurement points and one value at the 
extrapolation point, individual and corresponding to 
only this filter. The proposed approach allows us to 
considerably decrease (by several orders of 
magnitude) the dimension of the state vector and 
covariance matrices of estimation errors, facilitates 
realization of the algorithm, and improves its 
stability. 

 

1. Formulation of the problem and  
the method for its solution  

 

The problem of spatial extrapolation of the field 
of some atmospheric parameter ξ consists in 
estimation of its value at the point n with the 
Cartesian coordinates (xn, yn, zn) from measurements 
at the points with the coordinates (xi, yi, zi) (i = 1, 
2, 3, …, n−1) and some mathematical model 
describing variations of the field of ξ in space and 
time. In this case, we use the dynamic-stochastic 
model based on first-order stochastic differential 
equations. As to estimation of the field of ξ, this 
problem is solved for an arbitrary altitude, ignoring 
the relations between neighboring levels. The 
incorrectness of the model arising in such a case is 
compensated for by introducing noise of the states.  
 For derivation of the equations of the 
mathematical model, we used the well-known 
equation of diffusion. 

11 Note that we do not state in 
this paper that the equation of diffusion is an ideal 
model of evolution of any atmospheric field, 
pretending to be highly complete and realistic. 
However, any model of the fluid-dynamics type 
describes the processes of the ordered transport and 
diffusion of corresponding substances. Therefore, at 
this stage of investigations, we would like to reveal 
whether it is possible to obtain some constructive 
results based on only diffusion effects in the 
atmosphere. 

Consider a low-dimensional (space and time) 
field of ξ and assume that its evolution in the 
mesoscale region is described by a two-dimensional 
equation of mesoscale diffusion 

11: 
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 is the two-dimensional Laplace 

operator; a2 is the diffusion coefficient. 
For Eq. (1), we introduce the function of 

sensitivity to unit distortion (Green’s function) at the 
point with the coordinates (x0, y0), which has the 
form 
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After linearizing of the right-hand side of 

Eq. (4) near the point 2

0 4r a t=  and scale analysis, 
we obtain the equation 
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Thus, if at the time t = 0 the filed of ξ was 
distorted at some point, then at any time the 
response to this distortion at a distance comparable 
with r0 meets the following relationship:  

 .

∂ξ = −βξ
∂ρ

 (6) 

Represent now the function ξ as a complex 
Fourier integral over the spatial coordinates 

13: 
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is the principal value of the two-dimensional Fourier 
integral; kx and ky are, respectively, the õ and y 
wave numbers. 

It should be emphasized that in the integration 
we do not consider the entire spectrum of 
oscillations, but only its long-wave part 
corresponding to the wave numbers within the ranges 
[−kx max

; kx max
] and [−ky max

; ky max
]. Thus, for 

example, we neglect the short-wave variations of the 
turbulence. 

Differentiating the ξ twice with respect to õ and 
y, according to the theorem of integral differentiation 
with respect to a parameter, we have  
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The function 2 2( )x yk k− +  does not alternate the 

sign in the domain of integration; therefore, 
according to the theorem on the mean value of 
integral, 

11 the right-hand side of Eq. (8) can be 
written as 
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where k is the effective wave number. 
Introducing the effective wavelength L 

(effective length of distortions in the field of ξ), we 
can write 
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Then Eq. (1) can be represented as  
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2. 
Equation (11) is correct at all points, including 

the point r0 (at ρ = 0), hence we have 

 
0t ρ=
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∂

. (12) 

Thus, Eq. (6) can be used as a spatial 
interpolator (extrapolator) for the field of ξ, and 
Eq. (12) along with the condition ξ(0,0) = ξ0 can be 
used for temporal prediction of the same field, 
including the point r0.  

Within the designations of the Kalman 
filtering, 

14 introduce the vector of the space of states  
 

 X(m)=|X1(m), X2(m), X3(m), …, Xn-1(m), Xn(m)|T, 

with the components: Xi(m) is the value of the field 
of ξ at the points i = 1, 2, 3, …, (n − 1) 
(measurement points); Xn(m) is the value of the field 
of ξ at the point n (point of prediction) lying in the 
area not covered by the meteorological information; 
T denotes transposition; m is the discrete time. Then, 
using the Euler method, 

11 we can write Eqs. (6) and 
(12) in the difference form: 
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where ∆ρin is the separation between the points i and 
n; ∆t is the time interval between measurements.  

Substituting the expression for Xn(m + 1) from 
Eq. (16) to Eq. (15), we obtain the linear model for 
the evolution of the field X: 
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where ωi(m) and ωn(m) are random distortions 
accounting for the stochastic character of  the model. 
 The system of equations (17) can be used as a 
model of the space of states when synthesizing the 
algorithm for estimation of the current values of the 
field Õ within the theory of Kalman filtering. A 
restriction on the use of Eq. (17) is an uncertain 
value of the parameters α and β. Indeed, under the 
conditions of occurrence of various mesoscale 
processes, these parameters depending on the 
coefficient of mesoscale diffusion exchange of the 
substance X should differ. Therefore, to lift this 
restriction, we should introduce additional variables 
Xn+1 = Xn+1(t) = α and Xn+2 = Xn+2(t) = β. 

Assume that the evolution of 1n+X  and 2n+X  is 
described by the equations  

 1 2

1 2

d d
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d d
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t t
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where 1 2,
n n+ +′ ′ω ω  are random processes like white 

noise. 
Then, using the method of spatiotemporal 

discretization (13)−(14), we can obtain the general 
equations for the equations of states: 
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The equations of observations of the field Õ can 
be written as  

 Yi(m) = Xi(m) +εi(m), (20) 

where εi(m) are measurement errors at the time m. 
In this case, Eq. (20) uses, as Yi(m), the 

centered value of the measurements obtained as  

 ( ) ( ) ( )i im m m= −Y Y Y% , (21) 

where ( )i mY%  is the actually measured value of a 
weather parameter at the ith observation point for 

the mth instant; ( )mY  is the spatially averaged value 
of the same weather parameter at the mth instant. 
The latter was calculated by the following equation:  
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where n – 1 is the number of measuring stations at 
the considered territory. 

Write Eqs. (19) and (20) in the matrix form 

 X(m+1) = ΦΦΦΦ[X(m)] + ΩΩΩΩ(m);  (23) 

 Y(m) = HX(m) + E(m), (24) 

where ΦΦΦΦ[X(m)] is the transient vector-function of 
state; ΩΩΩΩ(m) is the (n + 2) vector of state noise; H is 
the (n − 1) × (n + 2) matrix of observations; E(m) is 
the (n − 1) vector of observation noise. 

Equations (23) and (24) fully determine the 
structure of the estimation algorithm. 

14 Since 
Eqs. (23) are nonlinear, the extended Kalman filter 
should be taken as a method for synthesis of the 
estimation algorithm. In this case, the equation for 
optimal estimation of the state vector X(m) has the 
form 

14: 

 X̂(m + 1| m + 1) = X̂(m + 1| m) + C(X̂, m + 1) ×  

 × [Y(m + 1) – H⋅⋅⋅⋅X̂(m + 1| m)],  (25) 

where X̂(m + 1| m + 1) is the estimate of the state 

vector X at the time (m + 1); X̂(m + 1| m) is the 
vector of estimates at the time (m + 1) predictable 
from the data at the mth step, and  

  X̂(m + 1| m) = ΦΦΦΦ[X̂(m)]; C(X̂, m + 1)  

is the (n + 2) × (n − 1) matrix of weighting 
coefficients. 

The weighting coefficients in the extended 
Kalman filter are calculated by recursion matrix 
equations of the form 

14: 

 C(X̂, m + 1) = P(m + 1| m) ⋅⋅⋅⋅ HT
 ⋅⋅⋅⋅ [H ⋅⋅⋅⋅ P(m + 1| m)⋅⋅⋅⋅HT + 

 + RE(m + 1)]–1;  (26) 

P(m + 1| m) = F[X̂(m)]  ⋅⋅⋅⋅ P(m | m)  ⋅⋅⋅⋅ FT [X̂(m)] + RΩΩΩΩ(m); 
  (27) 

P(m + 1| m + 1) = [I – C(X̂,m + 1) ⋅ ⋅ ⋅ ⋅ H] ⋅ ⋅ ⋅ ⋅ P(m + 1| m), 

  (28) 

where P(m + 1 | m) is the (n + 2) × (n + 2) a posteriori 
covariance matrix of the prediction errors; 
P(m + 1 | m + 1) is the (n + 2) × (n + 2) a priori 
covariance matrix of the estimation errors; RΕΕΕΕ(m + 1) 
is the (n – 1) × (n – 1) diagonal correlation matrix of 
the observation noise; RΩΩΩΩ(m) is the (n + 2) × (n + 2) 
diagonal correlation matrix of the state noise; 

F[X̂(m)] = 
∂ΦΦΦΦ[X̂(m)]

 ∂X̂(m)
 is the (n + 2) ×  (n + 2) Jacobi 

matrix of the transient vector-function; I is the 
(n + 2) × (n + 2) unit matrix. 

For the filtering algorithm to start at the time 
m = 0 (initiation time), the following parameters 

should be specified: X̂(0 | 0) − the initial estimation 
vector; P(0 | 0) −−−− the initial correlation matrix of 

estimation errors, RΕΕΕΕ(0) − the correlation matrix of 
observation noise, and RΩΩΩΩ(0) − the correlation matrix 
of the state noise. 

In practice, the values of X̂(0 | 0) and P(0 | 0) can 
be specified based on the minimum information about 
the real properties of the system, 

14 and in the case of 
complete lack of the useful information it is set  

X̂(0 | 0) = 0 and P(0 | 0) = I. At the same time, the 
elements of the matrices RΕΕΕΕ(0) and RΩΩΩΩ(0) can be 
determined from the errors of radiosonde 
observations. 

 

2. Results of investigation  
of the Kalman filtering algorithm  

 

Consider now the results of studying the Kalman 
filtering algorithm when it is used for spatial 
prediction of mesoscale temperature and wind fields. 
Since the spatial prediction in this paper is 
considered as applied to assessment of spread of a 
pollutant cloud, according to Ref. 15, we do not take 
wind and temperature measurements at some 
atmospheric levels, but their layer-mean values 
determined from the equation  

 
0

0

,

0

1
( )d

h

h h

h

z z
h h

< ξ > = ξ
− ∫ , (29) 

where <.> denote vertical averaging over an 
atmospheric layer ∆h = h − h0 (here h0 and h are the 
heights of the bottom and top boundaries of this 
layer, and h0 = 0 corresponds to the ground); ξ is the 
value of a meteorological parameter. 

It should be noted that to evaluate the quality 
of the Kalman filtering algorithm, we used many-year 
two-term (00:00 and 12:00 GMT) observations of five 
radiosonde stations: Warsaw (52°10′N, 20°58′E), 
Kaunas (54°53′N, 23°50′E), Brest (52°07′N, 23°41′E), 
Minsk (53°56′N, 27°38′E), and Lvov (49°49′N, 23°57′E) 
that form a typical mesometeorological network. The 
total volume of synchronous (for all the stations) 
measurements was 540 vertical profiles for winter and 
560 vertical profiles for summer. 

The number of stations taken determined the 
dimensionality of the state vector of the synthesized 
filter equal to n + 2 (here n = 5). As the initial 

conditions, we specified the values X̂(0 | 0) = 0 and 
P(0 | 0) = I, whereas the diagonal elements of the 
correlation matrices of observation noise RΕΕΕΕ(0) and 
state noise RΩΩΩΩ(0) were taken based on the values of 
root-mean-square (rms) errors of radiosonde 
measurements (Ref. 16) equal to 1° for temperature 
and 2 m/s for wind velocity. 

To assess the accuracy of the Kalman filtering 
algorithm, we took the stations Warsaw and Kaunas 
spaced by 185 and 277 km from the neighboring 
measurement stations as control points (extrapolation 
points). 
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The accuracy of the proposed algorithm was 
estimated using the rms error of the spatial 
extrapolation 
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Here iξ%  and *

iξ  are the measured and extrapolated 
values of a meteorological parameter; N is the 
number of realizations. 

In addition, to assess the quality of the Kalman 
filtering algorithm, we used the procedure of 
comparing its errors with the errors of the traditional 
Gandin’s method of optimal extrapolation. 

1 This 
method has gained the wide recognition in Russia in 
the system for assimilation of meteorological 
information. The weighting coefficients involved in 
the equation of optimal extrapolation were obtained 
with the use of spatial correlation functions from 
Ref. 17. 

Consider now the results of statistical assessment 
of the quality of the method proposed in the spatial 
prediction of mesometeorological fields using the data 
summarized in Tables 1 and 2.  

 

Table 1. RMS (δδδδ) and relative (θθθθ, %) errors in prediction 
of the layer-mean values of temperature and zonal and 
meridional wind velocity components to the distance of 
185 km as made based on the optimal extrapolation (1) 

and Kalman filter (2) algorithms 

Winter Summer 

δ θ δ θ 
Layer, 

km 
1 2 1 2 1 2 1 2 

Temperature, °Ñ 

0–0.2 1.9 1.7 41 37 1.8 1.6 42 37 

0–0.8 2.0 1.7 47 40 1.8 1.6 45 40 

0–1.6 2.1 1.6 51 39 1.9 1.5 53 42 

0–2.0 2.2 1.6 52 38 2.0 1.4 57 40 

0–4.0 2.9 1.6 60 33 2.7 1.1 82 33 

0–6.0 3.3 1.5 66 30 3.0 1.0 86 28 

0–8.0 3.5 1.4 73 29 3.2 0.9 89 25 

Zonal wind velocity component, m/s 

0–0.2 3.2 2.2 80 55 2.8 1.8 70 45 

0–0.8 3.3 2.7 62 51 2.7 2.0 52 38 

0–1.6 3.1 2.7 53 46 2.7 2.0 51 38 

0–2.0 3.0 2.6 51 44 2.6 1.9 49 36 

0–4.0 2.8 2.4 42 36 2.6 1.8 46 32 

0–6.0 3.2 2.8 42 36 2.6 1.9 44 32 

0–8.0 3.6 3.1 40 35 2.7 2.3 42 36 

Meridional wind velocity component, m/s 

0–0.2 2.7 2.0 71 53 3.0 1.6 86 46 

0–0.8 2.9 2.6 62 55 3.1 1.7 70 39 

0–1.6 3.0 2.7 56 50 3.0 1.6 71 38 

0–2.0 3.0 2.7 54 48 2.9 1.8 67 42 

0–4.0 3.0 2.7 44 40 2.9 2.0 67 46 

0–6.0 3.5 3.2 42 38 3.0 2.2 64 47 

0–8.0 3.8 3.5 39 36 3.2 2.5 62 48 
 

Table 2. RMS (δδδδ) and relative (θθθθ, %) errors in prediction 
of the layer-mean values of temperature and zonal and 
meridional wind velocity components to the distance  

of 277 km as made based on the optimal extrapolation (1) 
and Kalman filter (2) algorithms 

Winter Summer 

δ θ δ θ 
Layer,

km 
1 2 1 2 1 2 1 2 

Temperature, °Ñ 

0–0.2 2.0 1.7 49 41 2.2 1.7 54 41 
0–0.8 2.2 1.8 58 47 2.2 1.7 58 45 
0–1.6 2.5 1.6 64 41 2.2 1.6 63 46 
0–2.0 2.7 1.5 66 37 2.3 1.5 68 44 
0–4.0 3.2 1.4 70 30 2.9 1.4 88 42 
0–6.0 3.4 1.4 72 30 3.1 1.3 94 39 

0–8.0 3.6 1.4 80 31 3.4 1.3 97 37 

Zonal wind velocity component, m/s 

0–0.2 2.9 2.2 76 58 3.0 2.0 81 54 

0–0.8 3.0 2.7 68 61 3.1 2.3 74 55 
0–1.6 3.3 2.8 60 51 3.0 2.5 65 54 
0–2.0 3.5 2.9 60 50 3.0 2.5 62 52 
0–4.0 4.0 3.1 59 46 3.0 2.6 60 52 
0–6.0 4.2 3.2 55 42 3.2 2.6 54 44 
0–8.0 4.8 3.3 56 39 3.4 2.6 51 39 

Meridional wind velocity component, m/s 

0–0.2 3.2 2.0 89 55 3.5 1.9 97 53 
0–0.8 3.3 2.3 80 56 3.5 2.3 88 57 
0–1.6 3.4 2.6 61 46 3.4 2.5 77 57 
0–2.0 3.5 2.7 57 44 3.4 2.6 69 53 

0–4.0 3.8 2.8 49 36 3.4 2.8 59 48 
0–6.0 4.3 2.8 47 31 3.5 3.0 54 46 
0–8.0 4.8 3.0 44 29 3.5 3.0 48 41 

 
Analysis of the data presented in Tables 1 and 2 

shows the following. 
− First, the proposed method based on the use of 

the Kalman filtering algorithm and the dynamic-
stochastic model constructed based on the two-
dimensional equation of mesoscale diffusion gives the 
results quite acceptable for practical needs, 
especially, in the case that spatial prediction is 
carried out up to the distance of 185 km. Indeed, at 
this distance regardless of the considered parameter, 
season, and atmospheric layer, the rms errors are 
about 25−55% of the rms deviations characterizing 
variability of these parameters. 

− Second, this method gave the best results in 
spatial prediction up to the distance of 185 km for 
the layer-mean temperature values, for which the rms 
errors of prediction range within 1.4−1.7°C in winter 
and 0.9−1.6°C in summer. The summer values of δ for 
the layers with the top boundary h > 3 km are 
0.9−1.1°C, that is, they are at the level of the 
acceptable error set by the WMO for the troposphere 
and equal to 1.0°C (Ref. 18). 

− Third, as expected, the accuracy of spatial 
prediction of meteorological parameters decreases 
markedly with the distance. When predicting the 
layer-mean values of temperature to the distance of 
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277 km, only in winter in the free atmosphere the 
results obtained are somewhat better than those in 
the 185-km prediction, when it is carried out in the 
direction opposite to the zonal-mean west-east 
transport. 

− Fourth, the algorithm proposed provides for 
better results of spatial prediction as compared to the 
method of optimal extrapolation, and the greatest 
gain in the accuracy (from 1.3 to 3 times) was 
obtained when predicting layer-average values of 
temperature (especially for the layers with the top 
boundary at the height h > 3 km). 

Thus, it can be concluded that the proposed 
spatial prediction algorithm based on the extended 
Kalman filter and the dynamic-stochastic model 
taking into account only diffusion effects gives quite 
good results. Unlike the optimal extrapolation 
algorithm, it does not require a priori information 
about the statistical structure of the predicted fields 
of meteorological parameters. Therefore, this 
algorithm can be successfully applied in solving 
various practical problems, in particular, the problem 
of numerical estimation of mesoscale spread of the 
man-made pollutants. 
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