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We describe algorithms for determination of the mean values, standard deviations, 

asymmetry, and excess coefficients of the distributions of radial and tangential components of the 
horizontal wind velocity from the data obtained with a VOLNA-3 sodar using any of the three-
channel sensing schemes. Two possible approaches to construction of measurement algorithms and 
estimation of their errors are considered. Sodar measurements of the vertical profiles of the 
parameters under study are exemplified. 

 

Introduction 
 

Balser and Netterville 

1 were among the first to 
report on sodar measurements of the vertical profiles 
of the radial u and tangential v components of the 
horizontal wind velocity and their standard 
deviations σ(u) and σ(v). The most detailed 
description of determining these characteristics for a 
particular sensing arrangement can be found in the 
materials (Ref. 2) that were kindly placed at our 
disposal by the REMTECH Inc., whose sodars are 
well known all over the world. These materials also 
present some vertical profiles of these parameters. 
However, these profiles are not accompanied by the 
corresponding estimates of the measurement errors: 
neither interval nor point estimates needed for more 
objective characterization of the reliability of sodar 
data are available. Such a situation is quite typical 
for acoustic sounding of the atmosphere. 

3  
Often, (see, for example, Ref. 4) some 

theoretical reasons or results of test simulations are 
presented as justification for error estimates. Such 
considerations are usually restricted to only studying 
the estimates of the mean vertical component, as well 
as the mean speed and direction of the horizontal 
wind. However, even if these arguments are justified 
enough and valid, on the average, the actual accuracy 
characteristics are still determined by the particular 
state of the atmosphere and the noise situation during 
measurements. These factors determine the form of 
the statistical ensembles of the instantaneous radial 
components Vr measured with a sodar, the number of 
their significant readouts for a given observation 
time, and, finally, the achievable sounding heights 
and the uncertainty of estimates of the parameters 
sought. 

The aim of this paper is to obtain the standard 
errors at 90% confidence intervals for the parameters 
of the uv wind components directly from the 
experimental data obtained using any of the three-
channel sensing schemes. Along with the estimates of 
the means M(⋅) and standard deviations σ(⋅), we 

analyze the estimates of asymmetry γ(⋅) and excess 
ε(⋅), which provide for a more complete 
characterization of the atmosphere as a random 
medium. 

5 We consider two alternative approaches to 
construction of both the measurement algorithms 
themselves and the estimates of their errors that are 
realized in the processing system of   Volna-3 sodars. 

6 
The results obtained are illustrated with measurement 
data on the parameters under consideration. 

 

1. Basic equations 
 

These approaches are based on the corresponding 
functional dependences between the u and v-
components of the wind velocity vector measured 
with a sodar and the sought ones. In the initially 
chosen Cartesian coordinate system, the relation 
between the instantaneous radial Vr(i) and usual 
orthogonal components Vx(i), Vy(i) in some 
horizontal plane can be written as  
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= =
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where the coefficients ar and br are determined by the 
geometry of sounding used. Then we turn the old 
Cartesian coordinate system by an angle θ agreed 
with the direction of the mean vector of the 
horizontal wind velocity, 

1,2 that is,  

 0arctan[ ( )/ ( )] ,y xM V M Vθ = + θ   (2) 

where θ0 is some constant multiple of π/2 that is 
determined by the position of the mean values M(Vx) 
and M(Vy) on the coordinate plane. Then the 
relation between the components u(i), v(i) and 
Vx(i), Vy(i), Vr(i) sought in this horizontal plane 
can be presented as  
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where  

= cos( ) + sin( ),
r r r

u a bθ θ  and = cos( ) sin( )
r r r

v b aθ − θ  

are  the coefficients of transition from the radial 
components of the vector V to its transverse and 
longitudinal components. From Eqs. (2) and (3) it 
follows that  

 2 2( ) = ( ) + ( ), ( ) = 0,x yM u M V M V M v   (4) 

that is, the mean radial component M(u) is equal to 
the absolute value of the mean vector of the 
horizontal wind, and the mean tangential component 
M(v) is always zero. 

The problem formulated is solved using the 
methods of mathematical statistics.7,8 The field of the 
wind velocity is assumed horizontally homogeneous 
and stationary, which is the commonly accepted 
condition in sodar measurements.2 It is also assumed 
that Vr(i) obtained by the rth sodar channel at any 
fixed height form a set of independently sampled 
values corresponding to some continuous distribution 
Wr(Vr). 

 

2. Direct method for processing  
the u and v-components 

 

If this method is used for processing, the current 
values of the u and v-components obtained using 
functional equations (3) are considered as results of 
direct measurements. For better functioning of this 
method, it is necessary to provide the matching in 
space and time of the Vr(i) measurements in every 
ith sounding cycle.2,7 Rigorous fulfillment of these 
conditions requires parallel operation of the sodar 
channels and realization of very complicated tristatic 
sensing schemes providing for simultaneous 
measurement of all the three radial wind velocity 
components in the same scattering volume. It is most 
likely that this method a priori does not find wide 
utility in acoustic sounding of the atmosphere. 
Nevertheless, to check its efficiency, keeping in mind 
its further simplicity in processing of data, this 
method was realized in sounding with Volna-3 
sodars.  

First, Vx(i) and Vy(i) are calculated from Vr(i) 
by Eqs. (1), then, after the necessary averaging, the 
direction θ [Eq. (2)] and then the sought values of u 
and v-components are determined by Eqs. (3). In 
fact, this means that the case of indirect 
measurements (3) is reduced to multiple direct 
measurements. Therefore, the further processing of 
the orthogonal components can be carried out 
similarly to estimation of the parameters of the radial 
components, which is described in detail in Ref. 3.  

The disadvantages of this method are the 
probability that in some measurement cycles the 
instantaneous values of u(i) and v(i) remain 
uncalculated in case of missing signal or insufficient 
signal-to-noise ratio at least in one of the sodar radial 

channels.6 As a result, poor operation of only one 
measuring channel makes the number of significant 
readouts N of the u and v-components much lower 
than the maximum possible one. Finally, this leads to 
the low accuracy of measurements (large confidence 
intervals) and the low sounding height as compared 
to the potentially possible one, especially, at a short 
averaging time. 

 

3. Indirect method for processing  
of u and v-components 

 

An alternative, purely indirect method of 
processing is based on obtaining the functional 
relations between statistical moments of the u and v-
components and the moments of the radial 
components Vr (Refs. 1 and 2). Then the estimates of 
the needed parameters are formulated and the 
equations for measurement errors are determined. 

7 
Note that matching in space and time of the 
measuring channels is desirable for realization of this 
approach too. However, if compared with the direct 
method, the lack of matching at the horizontally 
homogeneous field of the wind velocity much weaker 
influences the final results because of the initial 
statistical averaging. Nevertheless, in Ref. 2 in 
determination of σ(u) and σ(v) a method was 
proposed to ensure this matching. However, in our 
opinion, it calls for more careful tests, especially, 
when estimating higher statistical moments. 

In obtaining these functional relations 
depending on the order of the considered central 
moment µk, let us use the following approximations. 
For k = 2 it is sufficient to restrict the consideration 
to pairwise lack of correlation between the channels 
for Vr measurements, and at k > 2 it is necessary to 
require their statistical independence. In fact, at 
k = 2 we neglect the values of interchannel second 
mixed central moments of the radial components 
cov(Vr, Vl) as compared to the channel variances 

( )
r

D V . For k = 3 we neglect the values of the third 

mixed central moments with respect to µ3(Vr), and 
for k = 4 the fourth mixed central moments are 
neglected with respect to µ4(Vr). That means that we 
assume that for the most common sounding 
geometries with the space–time separation of 
measuring channels these probabilistic dependences 
should be so weak, that they can be neglected. Note 
that in Ref. 1 the standard deviations σ(u) and σ(v) 
are calculated neglecting the statistical relations 
between the u and v-components as well. It should 
also be noted that for Eqs. (4) to be valid, the 
conditions of the lack of correlation and dependence 
between Vr are not obligatory.  

Taking into account the linear character of 
Eqs. (3) with respect to Vr and the results of Refs. 8 
and 9, the sought relations for the moments of the 
tangential and radial components take the form 
(presented only for u, because for v they are similar): 
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Effect of randomness of θθθθ on the estimates  
of the moments of the u and v-components 

 

Equations (4) and (5) were derived neglecting 
the random character of the angle θ. In fact, θ is 
always an a priori estimate of the unknown direction 
of the mean vector of the horizontal wind, namely, 

the function θ̂ = arctan [M̂(Vy) / M̂(Vx)]+θ0 of the 
estimates of the mean values of the Cartesian and 
radial components for the needed averaging time:  

  M̂(Vx) = ∑
r=1

3

 arM̂(Vr) and  M̂(Vy) = ∑
r=1

3

 brM̂(Vr). 

In this case, even initially independent Vr(i), 
the corresponding current values of the u(i) and v(i) 
calculated in different sounding cycles become 
dependent parameters. The initial value of cov(u, v) 
also changes, and extra terms appear in Eqs. (4) and (5).  
 To estimate quantitatively the effect of this 
distorting factor, expand the functions (3) of six 

random variables Vr, M̂(Vr) into a Taylor series in 
the vicinity of their mean values up to the square 
terms inclusive.7–9 For certainty, assume that the 
corresponding samples of mean values 

3 are used as  

M̂(Vr) and the number of significant readouts of 
Vr(i) in each sodar measurement channel is the same 
and equal to N. In the further averaging, we take 

into account that the estimates M̂(Vr) are unbiased 
and correlate with Vr in each channel. Finally, we 
obtain  

Ms(u) = M(u)[1 + D(v)/2M2(u)N] = M(u) + O(N–1). 

At the same time, the equation for the mean of the 
tangential component keeps unchanged, that is, 

s
( ) ( ) 0M v M v= = .  

Restricting the consideration to linear terms in 
the series for v, after some transformations, we 
obtain the following equations: 

 1 1

s( ) ( )(1 ) ( ) ( );D v D v N D v O N
− −= − = +  

 1 2 1

3s 3 3( ) ( )(1 3 2 ) ( ) ( ),v v N N v O N
− − −µ = µ − + = µ +   

 

1 2 3

4s 4

2 1 2 3 1

4

( ) ( )(1 4 6 3 )

( )(6 15 9 ) ( ) ( ).

v v N N N

D v N N N v O N

− − −

− − − −

µ = µ − + − +

+ − + = µ +
 

The square terms taken into account do not 
change the pattern. Similar equations accurate to the 

terms O(N–1) are also valid for the moments of the 
u-component. 

Let us now pass on to estimates of correlations 
between the u and v-components in different ith and 
jth sounding cycles. In this case, the corresponding 
parameters to be averaged are the functions of 
already nine random variables: Vr(i), Vr(j), and  

M̂(Vr), where r = 1, 2, 3. Among them, Vr(i) is 

correlated with M̂(Vr) and Vr(j) is correlated with  

M̂(Vr) in each channel. Then, taking into account the 
square terms: 

 

2

s s s

2 2 2 2

cov [ ( ), ( )] = [ ( ) ( )] ( ) =

= ( )/[4 ( ) ] = ( ),

u i u j M u i u j M u

D v M u N O N−

−

−
 

 1

scov [ ( ), ( )] = ( )/ = ( ),v i v j D v N O N−−  

 1

scov [ ( ), ( )] = cov[ ( ), ( )]/ = ( ),u i v j u i v i N O N−−  

where cov(u, v) = ∑
r=1

3

 urvrD(Vr) is the initial value of 

the correlation moment between the u and v-
components. For i = j the following equation is 
valid:  

 1 1

scov ( , ) = cov( , )(1 ) = cov( , ) + ( ).u v u v N u v O N
− −−  

Thus, the neglect of the random character of θ 
leads, in the worst case, to the neglect of the terms 
of the order O(N–1) in the equations for the moments 
of the u and v-components. However, in practice, the 
values of N usually achieve several tens and higher. 
Therefore, from this point on we neglect the 
influence of this factor in solving the problem 
formulated. (We plan to analyze in our future papers 
actually important systematic errors that may occur 
and which can be caused by inaccurate setting of the 
elevation and azimuth angles of the sodar antennas, 
as well as other, in particular, random factors.) 
Then, substituting the true moments by their 
estimates in Eq. (5), we obtain the equations for 
calculation of the parameters of the u-component of 
the horizontal wind velocity (the equations for the v-
component are quite similar): 

  M̂(u) = ∑
r=1

3

 urM̂(Vr);  (6) 

 σ̂(u) = µ̂2(u) = D̂(u) = ∑
r=1

3

 u
2

r D̂(Vr);  (7) 

 µ̂3(u) = ∑
r=1

3

 u
3

r  µ̂3(Vr),  (8) 

µ̂4(u) = ∑
r=1

3

 u
4

r  µ̂4(Vr) + 6 ∑
r<k

 u
2

r u
2

k D̂(Vr) D̂(Vk); (9) 

 γ̂(u) = µ̂3(u) / D̂3/2(u); (10) 

 ε̂(u) = µ̂4(u) / D̂2(u),  (11) 
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where the unbiased channel by channel estimates of 
the Vr parameters are determined by the equations 
from Ref. 3. 
 

Standard errors in estimates of the parameters 
of the u and v-components 

 

The standard errors of the estimates (6)–(11) 
were obtained taking into account the earlier 
accepted assumptions. In the simplest case of the 
estimate of the mean value (6), the equation for its 
standard error has the form  

 σ[M̂(u)] = ∑
r=1

3

 u
2

r D[M̂(Vr)],  (12) 

where the variance of the estimate of the mean value 

D[M̂(Vr)] = σ2[M̂(Vr)] is determined from Eqs. (1) 
or (2) of Ref. 3. 

To find the standard measurement errors for 
other parameters of the u-component, let us use the 
method of linearization, that is, consider only linear 
terms in the corresponding Taylor series. 

7–9 
Accounting for nonlinear term is inexpedient in this 
case from the practical point of view because of the 
further need to use sampled high-order moments, 
which are estimated with large errors at the limited 
number of observations N (Refs. 3, 7–9). Then, after 
the needed averaging taking into account that the 

applied estimates of D̂(Vr) are unbiased,3 we obtain 
the equation for the standard error of the estimated 
standard deviation of the u-component of the 
horizontal wind velocity: 

 σ[σ̂(u)] = 
1

2σ(u) ∑
r=1

3

 u
4

r D[D̂(Vr)], (13) 

where the variance of the estimate of the variance Vr 
is determined by Eq. (4) from Ref. 3. 

To estimate the asymmetry coefficient of the u-
component (10), we similarly come to the equation  

σ[γ̂(u)] = 
1

D(u) 

D[µ̂3(u)]

D(u)  + 
9
4 γ2(u) D[D̂(u)] – 

 




– 
3γ(u)
σ(u)

 cov[µ̂3(u), µ̂2(u)]
1/2

, (14) 

where 3/2
3( ) ( )/ ( )u u D uγ = µ  is the true value of the 

calculated parameter, and from Eq. (7) it follows 
that  

 D[D̂(u)] =∑
r=1

3

 u
4

r D[D̂(Vr)]. (15) 

The needed equation for covariance of the estimates 
of the second and third central moments of the u-
component can be found from Eqs. (7) and (8) of 
this paper and Eqs. (3) and (5) of Ref. 3: 

 cov [µ̂3(u), µ̂2(u)] =∑
r=1

3

 u
5

r cov [µ̂3(Vr), µ̂2(Vr)] = 

 = ∑
r=1

3

 
 u

5

rN
3

r 
(Nr – 1)2 (Nr

 – 2)
 cov[m3(Vr), m2(Vr)], 

where mk(Vr) is the central sampled kth-order 
moment of the radial wind velocity in the rth 
channel at the sample size Nr. According to Ref. 8, 
the following equation is valid accurate to the 

2( )
r

O N
− terms  

 3 2 2 35cov[ ( ), ( )] [ ( ) 4 ( ) ( )]/ .
r r r r r r

m V m V V V V N= µ − µ µ  

Finally, from Eqs. (8) of this paper and Eq. (5) of 
Ref. 3 we obtain 

 D[µ̂3(u)] = ∑
r=1

3

 
 u

6

rN
4

r 

[(Nr – 1)(Nr – 2)]2 D[m3(Vr)], 

where from Ref. 8 accurate to the 2( )
r

O N
−  terms 

D[m3(Vr)] = 

= 

2 3

6 2 4 3 2[ ( ) 6 ( ) ( ) ( ) 9 ( )]/ .
r r r r r r

V V V V V Nµ − µ µ − µ + µ  (16) 

From Eq. (16) it follows that the variance of the Vr 
third central moment, of the sample along with the 
sample size Nr is determined, to a significant degree, 
by the sixth-order central moment of Vr. In this case, 
using Eq. (16) in practice, one always has to 
substitute the true value of µ6(Vr) by the sampled 

value µ̂6(Vr). However, as was mentioned in Ref. 3, 
this necessary substitution, because of the low 

accuracy of µ̂6(Vr) determination at limited Nr, may 

lead to very large errors in calculation of 3[ ( )]
r

D m V . 

Therefore, using Eq. (16) and applying the method 
realized when deriving Eqs. (9) and (10) of Ref. 3, 
we obtain the approximation dependence of 

3[ ( )]
r

D m V  for the excess ranging within 1 < ε ≤ 25.2 

(for simplicity we omit the corresponding 
arguments): 

 
+

+

3 2 2

3 2

3 4

[ ] log (8.27 37.58log 70.8log

52.57log 13.98log )/ .
r

D m

N

≅ µ ε ε − ε ε −

− ε ε
 

As in Ref. 3, for the testing purpose, we 

calculated 3[ ( )]
r

D m V  by Eq. (16) and the 

approximate equation for the strongly asymmetric 
single-sided exponential distribution (γ = 2, ε = 9). 
The resulting relative error of approximation was as 
low as –0.1%. Thus, with the accuracy sufficient for 

practical needs, 3[ ( )]
r

D m V  can be determined 

through preliminary estimation of only the variance 
and excess of the initial distribution Wr(Vr). 

The general equation for the standard error of 
the excess measurements (11) has the form  

σ[ε̂(u)] = 
1

D(u) 

D[µ̂4(u)]

D2(u)  + 4ε2(u) D[D̂(u)] –   

 




– 
4ε(u)
D(u) cov[µ̂4(u), µ̂2(u)]

1/2

,  (17) 
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where ε(u) = µ4(u)/D2(u) is its true value. To 

determine D[µ̂4(u)], let us linearize the estimate (9) 
as a function of six random variables. In this case, 

µ̂4(Vr) and µ̂2(Vk) at r = k are pairwise dependent. 
After some transformations we obtain  

 D[µ̂4(u)] = ∑
r=1

3

 u
4

r {u
4

rD[µ̂4(Vr)] + 36 dr

2
D[D̂(Vr)] + 

 + 12 u
2

rdr cov[µ̂4(Vr), µ̂2(Vr)]}, 

where dr = D(u) – u
2

rD(Vr). From Eqs. (7) and (9) 
it follows that  

 cov [µ̂4(u), µ̂2(u)] = 6D(u) D[D̂(u)] +  

 +∑
r=1

3

 u
6

r {cov[µ̂4(Vr), µ̂2(Vr)] – 6D(Vr)D[D̂(Vr)]}. 

To find cov[µ̂4(Vr), µ̂2(Vr)], let us use Eqs. (3) and 

(6) from Ref. 3 for the estimates µ̂2(Vr) and µ̂4(Vr). 

After linearization of the statistics of µ̂4(Vr) and 

averaging accurate to the 2( )
r

O N
−  terms taking into 

account that at N ≥ 6 2 22 3 ( 1)N N N− + ≈ −  is valid 
with the relative error less than 10%, we obtain the 
relation between the covariance of unbiased and 
biased estimates of the second-order and fourth-order 
central moments of the radial wind velocity 
components:  

 cov[µ̂4(Vr), µ̂2(Vr)] =  

 = 
N

2

r

(Nr – 2)(Nr – 3) cov[m4(Vr), m2(Vr)]. 

Similarly, we can obtain the equation for the 
variance of the estimate of the fourth central moment 
of Vr: 

 D[µ̂4(Vr)] = 
N

2

r(Nr –1)
2

[(Nr
 – 2)(Nr – 3)]2 D[m4(Vr)]. 

Then, from Ref. 8 it follows that  

 cov[m4(Vr), m2(Vr)] = 

 = [µ6(Vr) – 4µ3

2
(Vr) – µ2(Vr)µ4(Vr)]/Nr; 

 D[m4(Vr)] =  

= [µ8(Vr) – µ4

2

(Vr) – 8µ3(Vr)µ5(Vr) + 16 µ2(Vr) µ3

2

(Vr)]/Nr. 

Then, according to the above-said, we obtain the 
approximation dependences for 1 < ε ≤ 25.2: 

 
4 2 2 2

4 2

3 4 2

[ ] = log (5.33 11.03log + 55.45log

65.69log + 30.88log ) / ;
r

D m

N

µ ε ε − ε ε −

− ε ε
 

 
3 2

4 2 2

2 3

cov( , ) = log

(1.68 + 4.29log 5.18log + 2.36log )/ .
r

m m

N

µ ε ε ×

× ε − ε ε
. 

In this case, for the single-sided exponential 
distribution the relative error of approximation was 
–0.2% for D[m4] and less than 0.1% for cov(m4, m2). 

Thus, all the components needed for obtaining 
the standard errors (12)–(14), (17) in sodar 
measurements of the parameters of the orthogonal 
components of the horizontal wind velocity are 
determined with the accuracy sufficient for practical 
needs. 

 

4. Comparison of the accuracy 
characteristics  

 

First, assume that the sample-mean values 

3 are 

used as M̂(Vr) and Nr = N for all the three sodar 
channels. The estimates of the parameters for the 
first, direct, method of measurements are marked by 
the subscript dir. Then, if the above assumptions are 
valid, it is possible to show the identity of the 

estimates of the mean values, that is, M̂dir(u) = M̂(u) 

and  D[M̂dir(u)] = D[M̂(u)]. And for the estimates of 
the variances, which determine the standard 
deviations of the u and v-components, the following 
is valid:  

 D̂dir(u) = D̂(u) + 

 + 
2

N – 1 ∑
i=1

N

  ∑
r<k

  uruk [V
⋅⋅⋅⋅

r(i) V
⋅⋅⋅⋅

k(i) – M̂(V
⋅⋅⋅⋅

r) M̂(V
⋅⋅⋅⋅

k)], 

  (18) 

where V
⋅⋅⋅⋅

r is the centered random value. It follows 

from Eq. (18) that M[D̂dir(u)] = M[D̂(u)], that is, 
the results of D(u) estimation by the two methods 
coincide on the average. However, 

D[D̂dir(u)] = D[D̂(u)] + 
4

N – 1 ∑
r<k

  u
2

ru
2

kD(Vr) D(Vk), 

where D[D̂(u)] is determined by Eq. (15). 
Consequently, the standard errors of the estimates of 
standard deviations of the u and v-components for 
the first method are greater than those for the second 
method. This is also valid for the estimates of 
asymmetry and excess, and the difference in the error 
values increases with the increasing order of the used 

sampled moment, that is, it reaches maximum at ε̂. 
When different median estimates 

3 are used as M̂(Vr), 
these conclusions almost do not change. (The latter 
two statements are based on the results of simulation 
of the measurement algorithms for the direct and 
indirect methods at different distributions of the 
radial components Wr(Vr) [Ref. 3].) 
 

5. Interval estimates of the parameters 
of u and v-components 

 

To get the idea of the accuracy and reliability of 

the above point estimates ĝ [Eqs. (6), (7), (10), and 
(11)] of the parameters of the u and v-components of 
the horizontal wind velocity, it is necessary to pass to 
the corresponding interval characteristics. Taking 
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into account that these measured parameters are 
similar to those considered in Ref. 3, apply again the 
approach that uses the properties of 90% confidence 
intervals I0.9 [Ref. 10]. Following Ref. 3, for all the 

estimates ĝ we determined the corresponding 
minimum sample size Nmin, starting from which it 
becomes possible to use this approach in practice. 
The simulation showed the consistency of Nmin 
obtained and those given in Ref. 3. Finally, if 
Nr ≥ Nmin for all the sodar channels, then any of the 
measured result on parameter g of the u and v-
components can be represented as  

 g0.9 = ĝ ± 1.6σ (ĝ) (19) 

with 90% confidence probability (the corresponding 
values of Nmin are given in Ref. 3). 

 

6. Experimental results 
 

The above-said is illustrated with the vertical 
profiles of the parameters of the radial wind velocity 
component measured with a Volna-3 sodar by the 
two methods considered above for different averaging 
time: Tav = 18 min (Fig. 1) and Tav = 60 min 
(Figs. 2–5). The measurement results for the mean 

value M̂(u) are denoted as M(u) in Figs. 1 and 2, for 

the standard deviation σ̂(u) as σ(u) (see Fig. 3), for 

the asymmetry γ̂(u) (see Fig. 4) and excess ε̂(u) (see 

Fig. 5) as ( )uγ  and ε(u). Following Eq. (19), the 

corresponding 90% confidence intervals are plotted as 
well. 
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Fig. 1. Mean value of the radial u component, m/s. 

 

The vertical profiles shown in Fig. 1 were 
obtained in Tomsk suburbs on January 26, 2000 at 
18:35 L.T., and those depicted in Figs. 2 to 5 were 
obtained on November 20, 1999 at 19:34 L.T. We do 
not describe the physical states of the atmosphere 
during these measurements, which caused these quite 
unusual profiles. Our task is to compare the two 
methods for estimation of the parameters of the u and 
v-components and to demonstrate the achievable 
accuracy. Note only that, according to the data of 

sodar facsimile records, an elevated temperature 
inversion was observed above 500 m on January 26, 
2000 during the whole day. This caused the presence 
of an echo signal from the corresponding heights (up 
to Hmax ≈ 650 m), and the power of this signal was 
sufficient for measurement of the mean u values by 
the indirect method, though with rather large I0.9 
(see Fig. 1). At the same time, the value of the echo 
signal was insufficient for measurements by the direct 
method, according to which the instantaneous values 
of the radial components Vr(i) are not accumulated 
by channels. The common region, where the 
characteristics of u could be measured by both the 
direct and indirect methods, was the height region of 
60 to 260 m. 
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Fig. 2. Mean value of the radial u component, m/s. 
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Fig. 3. Standard deviation of radial u component, m/s. 

 

It is worth noting quite a close agreement 
between the data obtained using both of the methods. 

Thus, I0.9 for M̂(u), except at the height of 248 m, 
cover the values of M(u)dir. For this H, the 
confidence intervals in both of the methods overlap. 
(Not to overload Figs. 1–3 with information, I0.9 for 
the direct method is omitted.) The central part of the 
considered height range was characterized by very 
weak echo signals that, finally, made the 
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measurements of the wind velocity impossible. These 
boundaries of intermittent reception of the acoustic 
signals are clearly seen in Fig. 1. They are 
characterized by a sharp increase of the confidence 
intervals: thus, I0.9 ≈ 3.4 m/s for  H = 313 m. 
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Fig. 4. Asymmetry coefficient of radial component. 
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Fig. 5. Excess coefficient of the radial component. 

 

With the increase of the averaging time, the 
maximum achievable height of measurement of the 
parameters of the u and v-components of the 
horizontal wind by the direct method also increases, 
as a rule, approaching Hmax of the indirect method 
(see Figs. 2–5). In the case of a stable echoes in all 
the three radial channels, the deviation of M(u)dir 
from M(u) (see Fig. 2) is small. It increases only 
starting from H ≈ 390 m. This can be explained by 
the fact that as the echo signal power decreases, 
M(u)dir is determined from only a part of Vr(i) 
measured by sodar because of the above reasons. At 
the same time, the estimate of M(u) uses the entire 
statistical ensemble of the data obtained. However, 
the confidence intervals of both methods still 
overlap. Analogous conclusions are also valid, though 
to a lesser degree, for estimation of the vertical 
profiles of σ(u) (see Fig. 3). In this case again, either 
the deviations of σ(u) from σ(u)dir are insignificant or 

their confidence intervals overlap. This fails only for 
H ≈ 352 m. However, the difference between σ(u) 
and σ(u)dir is not large: it does not exceed 0.3 m/s. 

The results of measurement of the asymmetry 
and excess coefficients γ(u)dir, ε(u)dir oscillate about 
rather smooth vertical profiles γ(u) and ε(u) (see 
Figs. 4 and 5). In the upper part of the height range, 
the spread of the deviations may be large enough. In 
this case several point estimates γ(u)dir, ε(u)dir can be 
thought unreliable. They are characterized by a sharp 
increase in the value of the confidence intervals: 
thus, I0.9[ε(u)dir] ≈ 4.8 at H ≈ 340 m. However, in 
this situation I0.9 also covers the corresponding point 
value of  ε(u). (Note that only the left part of I0.9 is 
shown for the direct method and only the right part 
for the indirect one.) Therefore, in this case it is also 
possible, in principle, to state the consistency of the 
data obtained by both of the processing methods, if 
the interval form (19) is taken as the corresponding 
measurement.  

 

Conclusions 
 

In general, our experience of using the two 
considered methods for estimating the parameters of 
the radial and tangential components of the 
horizontal wind velocity with a Volna-3 sodar 
suggests the following. The use of the direct and 
indirect methods for measurement of the mean values 
of the u-component in the presence of rather strong 
echo signals gives practically identical results. In this 
case, the mean value of the v-component is always 
zero. Somewhat larger differences are observed when 
measuring the standard deviations. However, this 
difference is, in general, statistically insignificant, 
which is not always true when estimating the 
asymmetry and excess coefficients.  

The direct measurements of these parameters are 
characterized by far higher uncertainty in the data 
obtained as compared to indirect measurements. This 
manifests itself in the higher irregularity of the 
corresponding vertical profiles and significantly wider 
confidence intervals. As a result, it becomes difficult 
to use this method for measuring the asymmetry and 
the excess.  

It should be also noted that correct estimation 
of the excesses of the u and v-components is difficult, 
if their probabilistic distributions are characterized 
by the presence of “heavy tails.” The values ε > 3.8 
roughly correspond to this situation. To determine ε  
with the acceptable statistical accuracy, the samples 
of the initial data in each radial sodar channel should 
have rather a large size Nr, and the larger is the 
excess to be estimated, the larger should be this size. 
Approximately, Nr should be equal to several 
hundreds of significant homogeneous readouts of Vr, 
which is not always achievable in the case of acoustic 
sounding. 

An obvious advantage of the indirect method is 
seen when observing weak echo signals and during 
short averaging time, which, finally, allows the 
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sounding height to be increased (sometimes by 100–
250 m with respect to the direct method). 

Using the equations presented in this paper, it is 
possible to evaluate the degree of uncertainty in the 
sodar measurements of the parameters of the u and v-
components of the horizontal wind velocity, which 
opens the way for more correct interpretation of the 
results of acoustic sounding of the atmosphere. 
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