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The paper proposes a modified method of morphological analysis for identification of gray-
scale images and a hardware/software pattern recognition system based on the proposed algorithm. 

 

Image processing and identification are 
traditionally based on the principles and theory of 
linear systems and on the Fourier transform (or other 
similar transformations). 

1,2 In many applications such 
an approach turned out rather efficient, but for 
images it does not permit numerical description of 
their shape and geometric structure. An alternative 
approach in analysis of images is mathematical 
morphology. It allows quantitative description of 
peculiarities of the geometric structure.  

Morphological analysis of image shape based on 
the set theory, integral geometry, analysis of convex 
functions, stereology, and geometric probability 

theory was developed by J. Serra and Yu.P. Pyt'ev 
in the 1960s. 

3,4 Active application of morphological 
analysis methods is caused by continuous 
development and enhancement of computer 
architectures used for morphological transformations 
of a signal. However, in spite of quite efficient 
mathematical structure of morphological analysis, 
these methods do not gain the common recognition 

yet. 
The main idea of morphological analysis can be 

represented as follows. 
Let R and Z be sets of real and integer numbers, 

and E is a d-dimensional continuous space Rd 

(d = 1, 2, 3, …) or a discrete space Zd. Then the d-
dimensional signal can be presented as a function of 
the area Rd (continuous) or Zd (discrete), whose 
range is either R at continuous amplitude variation 
or Z at quantized amplitude variation. 

Binary signals can be presented through sets. 
Binary images often result from threshold selection of 
gray-scale images, and threshold selection is often 
used to represent gray-scale images through binary 
signals, that is, through sets. Serra 

3 uses 
representation of a real d-dimensional function f(x), 
where x means a d-dimensional vector, through  
an ensemble of its d-dimensional threshold sets 
defined as 

 ( ) { : ( ) }, ,
a

T f x f x a a= ≥ −∞ < < ∞   

where the amplitude a fully covers R or Z depending 
on whether the signal f has a continuous or  
quantized range. Threshold sets have two important 
properties. They are linearly ordered, because 

( ) ( ),a ba b T f T f< ⇒ ⊇  and allow unambiguous 

reconstruction of the signal because  

 ( ) max{ : ( )},
a

f x a x T f x= ∈ ∀ .  

Consequently, f (x) can be reconstructed from 
the ensemble fa(x), since 

 ( ) max{ : 1},
a

f x a f x= = ∀ .  

Signal transformations in mathematical 
morphology are nonlinear operators that locally 
modify geometrical characteristics of 
multidimensional signals. Let X ⊆  E be a set 
representation of the binary input signal and B ⊆  E  
be a small-size compact set  of a simple shape (for 
example, d-dimensional sphere). The set B is called a 

structuring element. Let ±X b { }:x b x X= ± ∈  

expresses the vector transfer of X onto ± b ∈  E. The 
main morphological operators for sets are dilation ⊕  
and erosion of X�   with the help of B; they are 

defined as follows: 

 { }: and ,
b B

X B X b x b x X b B

∈
⊕ = + = + ∈ ∈U   

 { }: ( ) .
b B

X B X b z B z X

∈
= − = + ⊆� I   

Based on these definitions, we can show that the 
yield of the dilation operator is a set of transferred 
points, so that the transfer of the reflected 

structuring element B
(

{ }:b b B= − ∈  forms a non-

empty intersection with the input set, that is, 

{ }:( )X B z B z X⊕ = + ≠ ∅
(

I . Similarly, the yield of 

the erosion operator is a set of transferred points, so 
that the transferred structuring element is contained 
in the input set. 

Other operators are defined as combinations of 
erosion and dilation. For example, two extra 
operators: opening ° and closing X•  with the help of 

B are defined as  

 ( ) , ( ) .X B X B B X B X B B= ⊕ • = ⊕o � �   

The described set of the operators can be 
extended to many-level (that is, non-binary) signals 
represented by really-significant functions. Serra used 
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representation of the d-dimensional function f (x) by 
the set of its threshold sets. In this case, the 
operation of dilation of all the threshold sets of the 
function f with the same compact set B gives the sets 

( )
a

T f B⊕ , which are threshold sets of the new 

function f B⊕  referred to as the dilation of the 

function f with B. This new function can be calculated 

either as ( )( ) =f B x⊕ ∈ ⊕max{ : ( ) }
a

a x T f B  or from 

the direct equivalent formula  

 ( )( ) max{ ( )},
y B

f B x f x y
∈

⊕ = −   

 ( )( ) min{ ( )}.
y B

f B x f x y
∈

= +�   

Opening ( )o  and closing ( )•  of the function f 

with B  are determined as ( )f B f B B= ⊕o �  and 

( )f B f B B• = ⊕ � . 

Erosion of the function f with a small convex 
set B decreases the number of peaks and increases 
minima of the function. Dilation of the function f 
with B increases valleys and elongates maximums of 
the function. Opening with B  smoothes the plot of 
the function f from below by cutting peaks, while 
closing smoothes it from above by filling valleys of 
the function f. 

Another extension of the list of morphological 
operators for the functions was made by Sternberg, 

8 

who used the representation of the d -dimensional 
function f (x) by a (d + 1)-dimensional set. The 
corresponding umbra operator is expressed as  

 ( ) {( , ) : ( )},U f x a a f x= ≤   

that is, the umbra is a set of points lying below the 
surface represented by f (x). In general, the set 
expressing the umbra is extended up to a = −∞ . The 
function can be reconstructed from its umbra, 
because 

 { }( ) max : ( , ) ( ) , .f x a x a U f x= ∈ ∀   

The operations of dilation or erosion of the 
umbra of f with the help of the umbra of g yield the 
umbrae of new functions: dilation or erosion of f 
with g. These new formulas can be derived from the 
direct formulas  

 { }( )( ) max ( ) ( ) ,
y

f g x f y g x y⊕ = + −   

 ( )( ) min{ ( ) ( )},
y

f g x f y g y x= − −�   

where the ranges of x and y are defined as the 
intersection of the support of the function f and the 
support of the function g (shifted by x). The support 

of the function f is a set of x values, at which 

( )f x ≠ −∞ . The function g is assumed to have a 

compact support and play the role of the structuring 
element. Opening and closing of f with g are 
expressed as  

 ( )f g f g g= ⊕o �  and ( )f g f g g• = ⊕ � . 

Morphological filters are widely used in image 
processing and analysis. If W  is a small symmetric 
two-dimensional binary structuring element, then the 

difference of the sets \ ( )X X W�  gives the 

boundary of the binary image X, while the algebraic 
difference is 

 ( ) ( )EG f f f W= − � . (1) 

A similar operator improving the contour is the 
dilation gradient  

 ( ) ( )DG f f W f= ⊕ − . (2) 

Combining operators (1) and (2), we can obtain 
new contour operators, which provide for more 
symmetric processing of an image and its background. 
 The stability of detecting contours by these 
morphological contour operators can be improved 
through prior smoothing of the input signal of the 

image f  using linear smearing or self-tuning filters. 

 One of the fundamental problems in analysis of 
images is adequate mathematical description of 
images reproducing their content and meaning. In 
other words, this description should represent only 
significant (from the viewpoint of the problem to be 
solved) peculiarities of an image and be independent 
of insignificant details. In the morphological analysis, 
such insignificant characteristics are the conditions of 
recording the image of an object or scene 
(illumination, variation of optical properties of the 
object, variation of observation angles) and the 
parameters of the recording instrumentation. 

An important class of problems preceding 
comparison of image shapes includes the problems of 
image recording and separation of fragments. The 
image shape is understood as a maximum invariant of 
image transformations at variation of the observation 
conditions, parameters of the recording 
instrumentation, and so on. 

5 
Thus, the shape is not only determined by the 

object of scene under study, but it is closely 
connected with the model of recording of an image or 
scene. One of the ways to construct the shape is to 
specify the areas of constant brightness from the 
physical properties of the object, that is, from the 
arrangement of homogeneously luminous or reflecting 
sides or boundaries with respect to an observer. 
Assigning various brightness values to these areas, we 
obtain the image shape as a set of shapes. If such 
detailed information about the object is unavailable, 
we can construct the shape from one image, having 
known which transformations of the brightness of 
this image result from variation of the observation 
conditions. Any image, whose shape is not more 
complicated than f, can be obtained by fitting the 
brightness values Ci: 

( )
0

, ( , ).
n

i i

i

f x y C x y
=

= χ∑  
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Here Ci is the brightness of the ith point; χi(x, y)  is 
an indicator function, which is defined as follows: 

 ( )
0

, ,
1

i

i

i

A
x y

A

∉χ = 
∈

 

where iA is the set of points of a given intensity. 

Thus, construction of the image shape consists in 
determination of the indicator functions χi(x, y). In 
the simplest case, the range of variation of the image 
brightness f can be divided into n identical intervals. 
 Based on these suggestions, we can propose the 
following algorithm for identification of images. 

Initially, the image is transformed into the gray 
scale with nbit gradation of brightness in the range 

(0, )n . Through successive application of 

morphological operations, an image fragment (subject 
image) is separated out and reduced to the 
“universal” size. For the selected class of images, the 
indicator functions are calculated from brightness 
values of one (reference) image through pixel-by-
pixel analysis of the image. This operation yields the 
indicator functions of the image shape for the 
corresponding brightness values. 

Then the indicator functions are used to 
compensate for the difference in brightness 
characteristics without distortion of the shape of the 
analyzed image (“candidate”). For this purpose, the 
correcting coefficient is calculated for each indicator 
function of the analyzed image, since comparison can 
be carried out only when the image recording 
conditions are practically identical. 

This result can be obtained by applying the 
least-squares method (LSM). Toward this end, the 
brightness of the analyzed image is reduced to the 
intensity of the reference image so that the sum of 
the square deviations for each indicator function is 
minimum: 

 2

0

( ) min, (0, ),
m

i j i

i

C K C j n∗

=

− → =∑  

where iC  is the brightness of the reference image; 

iC
∗  is the brightness of the ith point of the candidate 

image; Kj is the correcting coefficient; m is the 
number of points for each indicator function. 

As a result, we have the reduced image without 
distortion of the shape, which can be compared with 
the basic image by finding the difference between 
pixels at every point i, k: 

 ,ik ik ikC C A
∗∗− =  

where Aik is the difference between images; Cik is the 

brightness of the reference image; ikC
∗∗  is the 

brightness of the reduced image. 
In the case of identical images the difference 

between them is zero, but when comparing real 
images it may be nonzero. For assessment of the 
residual image, the moment analysis is used. 

6 This 

analysis is based on the fundamental theorem: an 
infinite set of image moments {mαβ} or {µαβ} is 
unambiguously determined by the function f(x, y), 
and, vice versa, the function f(x, y) is 
unambiguously determined by the set of image 
moments {mαβ} or {µαβ} (α, β) = 0, 1, …. (Ref. 7): 

 ( , ) d dm f x y x y x yα β
αβ

∞

= ∫∫  

is the intrinsic moment; 

 0 0( , )( ) ( ) d df x y x x y y x yα β
αβ

∞

µ = − −∫∫  

is the central moment. 
As a result of calculations, we obtain the set of 

moment characteristics. For the set of characteristics 
of all reference images, the reference hyperplane is 
constructed: 

 1

1

0,

n

ni i

i

a m a +
=

+ =∑  

where im  are moment characteristics; ia  are 

hyperplane coefficients; 

 1

1( )

,

n

ni ik

i i k

m bm b +
= ≠

= +∑  

 , 1,..., 1i
i

k

a
b i n

a
= = + . 

For calculation of the coefficients of the 
reference hyperplane for this class (subject) of 
images, require for the moment characteristics 
calculated through the hyperplane coefficients to 
achieve minimum deviation from the calculated 
moment characteristics for all images of this class: 

 

2

1

1 1( )

( ) min,
m n

j j
nik i

j i i k

L m bm b +
= = ≠

  
 = −  +  →

    
∑ ∑b  

where 1 1( ,..., ), .
n

b b i k+= ≠b  

To assess these hyperplane coefficients, we 
construct the system of linear equations  

 
( )

0, 1,..., ( ),
m

L
m n m k

b

∂ = = ≠
∂

b
 

whose solution gives ib  for this class of images. 

These calculations yield the database of the 
vectors of the reference hyperplane for different 
classes of images. 

For the image coming from a video recorder 
(candidate), images from the database are 
successively selected. For two images the reduced 
difference and moment characteristics are calculated. 
The coefficients of the reference hyperplane from the 
database are used to assess the difference between the 
calculated characteristic and that obtained from the 
hyperplane coefficients: 
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 +
=

= + ≠ =∑re
1

1

( ), 1,..., ,
n

l l
ni ik

i

m bm b i k l N  

where 
re

l
km is the calculated moment characteristic of 

the lth reference image; N is the number of reference 
images in the database; l is the current reference 
image. 

The reference image, whose difference with the 
current image is minimum, is fixed  

 − = ∆
re hyp

,k km m  

where 
hypkm  is the moment characteristic calculated 

by the hyperplane coefficients. 
The obtained value of ∆  is compared with the 

acceptable deviation for the given class of images. If 
it is smaller than the acceptable deviation, then the 
candidate belongs to this class. Otherwise, the 
candidate does not fall in any class (FOREIGN). As 
an acceptable value, we can take the estimate 3σ, 
where σ is the root-mean-square (standard) deviation 
for this class of images. 

The method proposed allows comparison of 
images and their classification by certain indices. 

 
 

The main advantage of this method is image 
correction without loss of the information about the 
shape. This method can be employed in devices 
applicable in various technological fields, in 
medicine, science, etc. 
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