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The computational scheme of the step-by-step technique for radiative transfer problems taking 
into account multiple scattering and multiple reflection from the surface for various natural radiation 
sources is described. Some peculiarities of implementing this technique for calculations of thermal 
radiation scattering by aerosol formations in the atmosphere are considered. Simplifications and 
approximations enabling one to develop efficient computational algorithms in this case are suggested. 

 

Introduction 
 
With the advent of high-accuracy instrumentation 

for measuring the intensity of thermal radiation from 
the atmosphere and the surface in the IR and 
microwave spectral regions, it has become important 
to develop adequate high-accuracy physical-
mathematical modeling of findings from such 
measurements. In particular, such a modeling is 
especially urgent for interpretation of remote 
measurements, evaluation of their information 
content on the atmosphere and surface, and in other 
studies connected with solution of inverse problems 
of atmospheric optics. An important stage in 
improving the adequacy of the modeling algorithms is 
the account of multiple scattering by atmospheric 
aerosols, clouds, and precipitation.  

The problem of numerical calculation of the 
field of scattered radiation in the horizontally 
homogeneous plane-parallel atmosphere can be now 
believed solved.1–3 However, most of the numerical 
methods are considered only for traditional problems 
of transfer of scattered solar radiation, and therefore 
it is difficult to adapt them to the IR and microwave 
(MW) regions, in which every elementary 
atmospheric volume is a source of radiation. In my 
opinion, in these spectral regions we can use one of 
the oldest and simplest methods of the radiative 
transfer theory, namely, the step-by-step technique. 
It is not only simple in implementation, but also very 
convenient in research problems, because it allows 
one to find directly which of the elementary 
components determine the measured radiation and 
what are their contributions. The well-known 
disadvantage of this method is its poor convergence 
in the case of weak atmospheric absorption, but in 
the IR and MW regions, where molecular absorption 
is always strong, this disadvantage is insignificant. 
Note that once the step-by-step technique is adapted 
to particular applied problems, its efficiency can be 

increased by tens times due to application of simple 
computational approaches that will be mentioned in 
Part 2 of this paper. 

 

Problem formulation 
 

The instrumentally measured radiation intensity 
is determined by a convolution of the monochromatic 
intensity with the instrumental function. Since the 
latter is believed known, the problem reduces to 
calculation of intensity in the monochromatic case at 
a given frequency (or wavelength, wave number) ν. 
Geometrically, the monochromatic intensity is 
characterized by the height of measurement z above 
the surface, nadir angle ϑ, and sighting azimuth ϕ 
(the nadir angle of sighting varies from 0° for nadir 
sighting to 180° for zenith sighting). The sighting 
azimuth is measured in the horizontal plane from an 
arbitrarily selected direction (varies from 0 to 360°). 
 For the Earth’s atmosphere, we use the plane, 
horizontally homogeneous model with the bottom z0 
and top z∞ boundaries. First, let us consider the 
approximation of unpolarized radiation. All the 
mentioned parameters of the atmosphere and the 
surface (volume extinction and absorption 
coefficients and others) at the frequency ν are 
assumed known. 

 

Radiation transfer through  
the atmosphere 

 

The monochromatic intensity is calculated based 
on the radiative transfer equations and their 
solutions.1–4 If radiation propagation is characterized 
only by extinction, then the sought intensity at 
radiation propagation from the initial height z1 to the 
final one z2 is determined by the Bouguer law 

 2 1 1 2( , , , ) ( , , , ) ( , , , )I z I z P z zν ϑ ϕ = ν ϑ ϕ ν ϑ . (1) 
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is the transmission function, where α(ν, z) is the 
volume extinction coefficient  (of air). The concept 
of optical depth τ  corresponding to the height z is 

introduced. By definition,1,2 τ(ν, z) ( , )d

z
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The parameter τ0(ν) = τ(ν, z0) is the optical depth of 
the entire atmosphere. 

In the case of transfer of thermal atmospheric 
radiation neglecting scattering under conditions of 
local thermodynamic equilibrium (LTE) between the 
radiation and matter, the solution of the radiative 
transfer equation has the well known form  

 2 1 1 2( , , , ) ( , , , ) ( , , , )I z I z P z zν ϑ ϕ = ν ϑ ϕ ν ϑ +  
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where κ(ν, z) is the volume absorption coefficient; 
Be

(ν, T) is the Planck’s function depending on the 
radiation frequency and the air temperature 

(B
e(ν, T) = 2hν3/c2[exp (hν/kT) – 1]. Here h  is the 

Plank’s constant; k  is the Boltzmann constant; c  is 
the speed of light). Note that Eq. (2) can be written 
in the traditional form, convenient for calculations, 
with integration of the derivative of the transmission 
function: 
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are individual transmission functions for the 
scattering and absorption processes, respectively. 

In the presence of scattering under LTE 
conditions and making allowance for transition to 
coordinates η = cos ϑ and the optical depth τ, the 
radiative transfer equation takes the form 

1,2,4 
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Here  

ω0(ν, τ) = σ(ν, τ) / α(ν, τ) = σ(ν, τ) / [σ(ν, τ) + κ(ν, τ)] 

is the single scattering albedo, where σ(ν, z) is the 
volume scattering coefficient; x(ν, τ, χ) is the scattering 
phase function normalized as follows  
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and 

  χ = ηη′  + 2 2(1 )(1 ( ) )′− η − η cos (ϕ – ϕ′). 
 

Radiation sources 
 

The sources in the considered class of the 
radiative transfer problem in the atmosphere can be 
the following: extraterrestrial sources – cosmic 
radiation incoming to the Earth, in particular, solar 
radiation; sources on the atmospheric bottom – 
thermal radiation from the surface and the radiation 
reflected from the surface; sources inside the 
atmosphere – thermal radiation from every 
elementary air volume. The radiation reflected from 
the surface depends on the radiation field in the 
atmosphere, while all other sources are independent 
of it. 

Let us consider first the problem on calculating 
the radiation field neglecting reflection from the 
surface. In this case, the intensities of all sources are 
known. For simplicity and convenience, the function 
B(ν, τ, η, ϕ) is introduced as a function of sources 
being at the optical depth τ and emitting along the 
direction (η, ϕ). According to Refs. 1 and 4, these 
sources are all the terms, except for the intensity, in 
the right-hand side of the radiative transfer equation 
written in the coordinates of the optical depth (4). 
The source function in this case is separated into the 
terms corresponding to sources of different types.  

Consider first the source functions of the initial 
radiation, that is, neglecting the contribution of 
scattered radiation to them, and denote them as 
B0(ν, τ, η, ϕ). For the thermal radiation under LTE 
conditions, this, according to Eq. (4), immediately 
gives  

 0 0( , , , ) [1 ( , )] [ , ( )].
e

B B Tν τ η ϕ = − ω ν τ ν τ  (5) 

After introduction of the source function, we can 
easily obtain the equations like the following one 
(see, for example, Ref. 1): 

 
( )

1
( , , , ) ( , , , ) ( , , , )d ,I B P

τ

τ η

′ ′ ′ν τ η ϕ = − ν τ η ϕ ν τ τ η τ
η ∫  (6) 

where τ(η) = τ0, if η > 0; ( ) 0τ η = , if 0η < . For the 

source being at the optical depth τ′  and characterized 
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by the radiation intensity I0(ν, η, ϕ), Eq. (6) should 
transform to the Bouguer law (1), wherefrom it 
follows that  

 0 0( , , , ) ( , , ) | | ( )B I ′ν τ η ϕ = ν η ϕ η δ τ − τ , (7) 

where δ(τ – τ′) is the delta function. Thus, in the 
absence of reflection, the function B0(ν, τ, η, ϕ) by 
Eqs. (5) and (7) is determined for all types of sources 
(both the sources of thermal radiation and, for 
example, sources at the atmospheric boundaries). 

Because of the linear character of the radiative 
transfer equation (4) the sought radiation field, for 
an arbitrary distribution of sources, can be found as1,4 

 I(ν, τ, η, ϕ) = 

 
0 1 2

0

0 1 0

d d d ( , , , , , ) ( , , , )T B

τ π

−

′ ′ ′ ′ ′ ′ ′ ′ ′= τ η ϕ ν τ η ϕ τ η ϕ ν τ η ϕ∫ ∫ ∫ , (8) 

where the radiation intensity I(ν, τ, η, ϕ)  at any 
(arbitrary) coordinates (τ, η, ϕ) for the given source 
function B0(ν, τ′ , η′ , ϕ′) at fixed (but again arbitrary) 
coordinates (τ′ , η′ , ϕ′) is formally written as 
I(ν, τ, η, ϕ) = T (ν, τ, η, ϕ, τ′ , η′ , ϕ′)  B0 

(ν, τ′ , η′ , ϕ′). 
Equation (8) can be written in a compact operator 
form as 0=I TB , where I  and 0B  are the radiation 

intensity and the source function, T  is the linear 
radiative transfer operator (the action of a linear 
operator on a function, see Ref. 5, can be presented 
symbolically as a product; by definition =G AF  is 
equivalent to  

 ( ) ( , ) ( )d

b

a

g x a x x f x x′ ′ ′= ∫ ,  

wherefrom we have for the operator product =C AB  

 ( , ) ( , ) ( , )d

b

a

c x x a x x b x x x′ ′′ ′′ ′ ′′= ∫ , 

the power of an operator is defined as 1n n−=A AA , 
1 =A A ). 

In the absence of scattering, all the parameters 
for this case are denoted by the zero subscript, we 
obviously have from Eq. (6) that  

 0 0 0,=I T B  (9) 

where 

 0

1
( , , , , , , ) ( , , , ) ( ) ( )T P′ ′ ′ ′ ′ ′ ′ν τ η ϕ τ η ϕ = − ν τ τ η δ η − η δ ϕ − ϕ

′η
, 

if η′  > 0 and τ′  ≥ τ  or η′  < 0 and τ′  ≤ τ; 

 0( , , , , , , ) 0T ′ ′ ′ν τ η ϕ τ η ϕ = ,   (10) 

if η′  > 0 and τ′  < τ  or η′  < 0 and τ′  > τ  

is the transfer operator for the direct radiation. 
The difficulty of taking into account the 

scattering consists in the fact that in this case Eq. (6) 
is no longer a solution, because the source function 

itself depends on the sought intensity [the term with 
the integral in Eq. (4)]. A standard approach4 in 
taking into account the scattering is separation of the 
direct radiation and diffuse radiation, that is, the 
radiation after at least one scattering event. Actually, 
representation of the sought intensity as a sum  

 I(ν, τ, η, ϕ) = I0(ν, τ, η, ϕ) + In(ν, τ, η, ϕ), 

where I
n(ν, τ, η, ϕ) is the intensity of scattered 

radiation (only scattered, without the direct radiation 
and the radiation reflected from the surface), gives 
the transfer equation for the scattered radiation, from 
which we have the integral equation for the source 
function1,2,4: 

 Bn
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In applied calculations, the integral equation for the 
radiation intensity is often used.3 Its solution 
immediately gives the sought value, but this equation 
includes the direct radiation intensity 0I  in place of 

0B . Since the intensity should be calculated all over 

the coordinate grid, computations are more 
voluminous than in the case of integration of the 
source function by Eq. (6) already for a limited 
number of needed coordinates. Therefore, the scheme 
for calculation of just the source function for 
scattered radiation seems to be more economic. 
 

Step-by-step technique 
 

Equation (11) is the Fredholm integral equation 
of the second-kind; in the operator form it is written 
as follows 

 1 1 0n n
= +B TB TB  (12) 

where  
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,  

if η′  > 0 and τ′  ≥ τ  or η′  < 0 and τ′  ≤ τ; 

 1( , , , , , , ) 0T ′ ′ ′ν τ η ϕ τ η ϕ = ,   (13) 

if η′  > 0 and τ′  < τ  or η′  < 0 and τ′  > τ   

is the operator of transfer of the single scattered 
radiation. The formal solution of the Fredholm 
integral equation of the second-kind (12) is the 
Neumann series  

 2 3

1 0 1 0 1 0 ...

n
= + + +B TB T B T B  . (14) 

The series (14) is known as an expansion of the 
source function for scattered radiation in terms of the 
number of scattering events. In practice, expansion of 
Eq. (14) is realized as a recursion computational 
scheme – the step-by-step technique. 
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Taking into account reflection from 
the surface 

 

Consider now the process of radiation reflection 
from the Earth’s surface. In the general case, it can 
be specified as an intensity ratio between the 
radiation incident on the surface I(ν, τ0, η, ϕ) at 
η < 0 and the radiation reflected from the surface 
I(ν, τ0, η, ϕ) at η > 0. Denote the case η < 0 as 

0( , , , )I
↓ ν τ η ϕ  and the case η > 0 as 0( , , , )I

↑ ν τ η ϕ . The 

relation between them can formally be written as  

 0( , , , )I
↑η ν τ η ϕ =  
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π
↓

−

′ ′ ′ ′ ′ ′ ′= − ϕ η ν η η ϕ − ϕ ν τ η ϕ η∫ ∫  (15) 

The function R(ν, η, η′ , ϕ – ϕ′) characterizes 
the process of reflection, expressing the intensity of 
the radiation reflected from the surface along the 
direction (η, ϕ) through the intensity of the radiation 
incident along the direction (η′ , ϕ′). Thus, for an 
ideal specular reflection  

R(ν, η, η′ , ϕ – ϕ′) = r(ν, –η′) δ(η – (–η′))δ(ϕ – ϕ′), 

where r(ν, –η′) = r(ν, η) is the reflection coefficient 
calculated by the Fresnel equations, see, for example, 
Refs. 6 and 7. For isotropic reflection  

 
( )

( , , , ) ,
A

R
ν′ ′ν η η ϕ − ϕ = η

π
 

where A(ν) is the spectral albedo of the surface. In 
the operator form Eq. (15) can be written as  

 ,0 1r
=B R I , (16) 

where I  is the radiation intensity before reflection; 

,0r
B  are additional source functions arising due to 

reflection; 1R  is the single reflection operator: 

 1( , , , , , , )R ′ ′ ′ν τ η ϕ τ η ϕ =  

 0 0( , , , ) ( ) ( ),R′ ′ ′ ′= −η ν η η ϕ − ϕ δ τ − τ δ τ − τ  

if η > 0 and  η′  < 0; 

 1( , , , , , , ) 0,R ′ ′ ′ν τ η ϕ τ η ϕ =   (17) 

if η < 0 and  η′  > 0. 

Thus, taking into account the reflection reduces 
to re-calculation of the source functions by Eq. (16). 
As a result, additional sources arise on the surface. In 
the general case of present scattering, these sources 
again change the intensity of the radiation incident 
on the surface, and this process gives rise to the 
iteration series known as calculation of the sought 
intensity with the allowance for the number of the 
scattering events: 

 2 3

0 1 0 1 0 1 0 0( ( ) ( ) ( ) ...)= + + + +I T T R T T R T T R T T B , (18) 

where 

 2 3

1 1 1 ...= + + + +T 1 T T T  (19) 

is the radiative transfer operator ignoring reflection; 

0B  is the distribution of the  initial radiation sources 

in the atmosphere.  
As to practical application, it is convenient to 

substitute Eq. (19) into Eq. (18) by introducing 
2 3

s 1 1 1 ...= + + +T T T T  – the transfer operator for the 

scattered radiation ignoring reflection and direct 
radiation, and to take into account that from the 
explicit equations (17) and (10) for the operators 1R  

and 0T  we have 1 0 1 0 =R T R T 0 , which at 2n ≥  gives 

the following equation: 

 1

s s s1 0 1 0 1 0 1 0 1 0( ) ( )n n−+ = +R T R T T R T T R T R T T ,  

hence  

 s0 1 0 0 0 1 0 0( ) ( )= + + + +I T 1 R T B T 1 R T TB  

 2

s s0 1 0 1 0 1 0 0( ( ) ...)+ + + +T R T T R T T R T B  

 2

s s s0 1 0 1 0 1 0 0( ( ) ...) .+ + +T R T T R T T R T TB  (20) 

The four terms in the equation for intensity (20) 
have clear physical meanings: the first one is the 
contribution of direct radiation with the allowance 
made for the single reflection, the second is the 
contribution of scattered radiation with the 
allowance for single reflection, the third one is the 
contribution of multiple reflection from the reflected 
and scattered direct radiation, the fourth is the 
contribution of multiple reflection from the scattered 
radiation. Note that the latter two terms are usually 
small enough and can be neglected in some applied 
problems. Separation of the direct and scattered 
radiation in Eq. (20) allows us to lift some 
limitations imposed at problem formulation, because 
only the direct radiation can be calculated by 
Eqs. (3) and (9), for example, for the spherical 
model of the atmosphere. 

 

Peculiarities of taking into account 
the scattering in the IR and MW 

regions  
 

In the IR and MW spectral regions, the main 
source is thermal radiation of the atmosphere and the 
surface, the former being isotropic and the latter either 
also isotropic or depending on only the angle η, but 
independent of the azimuth ϕ for most of the model 
surfaces. If we consider only such sources, then the 
radiation intensity is independent of the azimuth 
because of the azimuth isotropy. Then the non-zero 
parts of the single scattering (13) and reflection (17) 
operators can be written in the form  

 0

1

( , )
( , , , , ) ( , , , ) ( , , , );

4
T p P

ω ν τ′ ′ ′ ′ ′ν τ η τ η = ν τ η η ν τ τ η
′πη

 

 1 0 0( , , , , ) ( , , ) ( ) ( ),R ′ ′ ′ ′ ′ν τ η τ η = −η ρ ν η η δ τ − τ δ τ − τ  (21) 



672   Atmos. Oceanic Opt.  /August  2003/  Vol. 16,  No. 8 A.V. Vasil’ev 
 

 

where 
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′ ′ ′ν τ η η = ν τ ηη + − η − η ϕ ϕ∫     

 
2

0

( , , ) ( , , , )dR

π

′ ′ρ ν η η = ν η η ϕ ϕ∫  (22) 

are the scattering phase function and reflection 
function averaged over azimuth. For the Rayleigh 

scattering phase function 2( ) 3(1 )/4x χ = + χ  we 

have:  

 2 2 2 23
( , ) (3 3 ( ) ( ) )

4
p ′ ′ ′η η = π + η η − η − η .  

Difficulties arise in this approach, if it is needed 
to take into account processes without azimuth 
isotropy, such as direct solar radiation and some 
complicated models of reflected surfaces, for 
example, rough water surface.8 In the case of account 
of the direct solar radiation, the problem of its 
transfer can be solved separately based on 
independent summation of intensities from all the 
sources, and then the result can be added to solution 
of the problem for the thermal radiation. The 
methods for calculation of solar radiation field in the 
atmosphere are now well known, see, for example, 
Ref. 3. The azimuth anisotropy of reflection from the 
surface at illumination by the azimuth-isotropic 
radiation is low,8 therefore it is quite feasible to 
calculate the scattered radiation ignoring it. 
Thus, for the overwhelming majority of applied 
problems involving calculation of the scattered 
radiation in the IR and MW regions it seems possible 
to use the azimuth-average transfer model (21) and (22). 
 Another important feature of the IR and MW 
regions is the presence of a rather strong molecular 
absorption, which weakens the effect of scattering 
and reflection on the measured intensity. In taking 
this into account, assume (R1T0Ts)

n  ≈ (R1T0T1)
n in 

solution of (20). In this case, multiple reflection is 
actually taken into account only in the single 
scattering approximation. The Eq. (20) can be 
written for practical realization already as a recursion 
algorithm  

 0 1 0 1 0

0

( )( )n

n=


= + +


∑I T 1 R T T B  

 0 1 0 1 1 0 1 0

1

( ) ( ) ,m n

m=


+ 


∑T R T T R T T B  (23) 

in which it is sufficient to keep in mind only the 

source function 1 0( )n

n
=B T B  recalculated at any 

iteration. Note that Eq. (23) systematically 
underestimates the result as compared to rigorous 
equation (20), but this error can be neglected in most 
practical problems. 

The algorithm implementing the step-by-step 
technique for the IR and MW regions with the 
allowance for these features will be given in Part 2 of 
this paper. 

 

Conclusion 
 

The presented general scheme of the step-by-step 
technique can be easily implemented on a computer 
(see also Part 2 of this paper). It, unlike many other 
methods, allows one to use various complex models 
of reflection from the surface and natural emission of 
the surface. The method described is especially useful 
in scientific and research calculations, because it 
allows one to assess the accuracy of various 
approximations and select the number of scattering 
and reflection events to be taken into account in 
particular computational problems.  
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