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A singular wave field was shown to have memory of optical vortices that existed in this 
field. After vortex annihilation, characteristic marks remain in the cross phase distribution. The 
phase near these marks exceeds essentially the phase in the adjacent area. Besides, vortex backwash 
manifests itself on the wave-front surface, where the vortex trail holds after vortex annihilation, and 
such wave front characteristics as the mean and Gaussian wave front curvatures are singular 
functions within the vortex trail. Some issues concerning the calculation of the phase distributing for 
singular wave fields are discussed. 

 

Introduction 
 

Vortex structures in the wave fields of any 
origin attract an increasing interest of investigators 
dealing with the wave propagation through linear 
and nonlinear media, as well as with the diagnostics 
of such media. Such structures are now studied most 
intensely in optics, where they are called optical 
vortices.1,2,3 An optical vortex is a local distribution 
of the field in the plane normal to the direction of 
wave propagation. The field strength at the vortex 
center is zero, and there is a field phase increment of 
2πm along a closed contour that goes around the 
center (here m is an integer called the topological 
charge of the vortex). The wave front surface in the 
zone of an optical vortex is a spiral structure similar 
to that arising in the zone of a crystal lattice defect. 
It is for these reasons that such wave front 
singularities are called dislocations. As the radiation 
propagates through the medium, optical vortices 
arise, move, and annihilate. 

On the one hand, this phenomenon hampers 
functioning of adaptive optics systems in the turbulent 
atmosphere,4 but, on the other hand, it favors a 
number of new applications thanks to many its 
marvelous properties. An optical vortex has the orbital 
angular momentum mh per photon,5 and this is a 
prerequisite for using vortices for optical manipulation 
of microscopic particles. 

As known,1,2 vortices arising and annihilating in 
the process of laser beam propagation through a 
homogeneous or inhomogeneous medium do this by 
pairs, if only they did not already exist on the 
boundary of this medium. It is assumed that the 
wave front singularities annihilate simultaneously 
with the annihilation of vortices, and thus the wave 
front becomes smooth.6 

However, it should be noted that in studying 
singular optical fields the attention is usually paid to 
the main value of the phase or the main value of the 
argument of the complex amplitude being a solution 

to the wave equation. Nevertheless, there is a method 
for phase calculation based on integration of the 
phase gradient along the ray trajectories (lines of 
energy flow). This method is usually used in solving 
wave problems in the geometric optics approximation,7 
but it can also be applied to calculation of the phase 
distribution, when diffraction phenomena should be 
taken into account. In this case, we should use the 
lines of energy flow calculated for the diffraction 
field (diffraction rays).8,9 

As known, the lines of the energy flow (diffraction 
rays) of a light beam in the vicinity of optical 
vortices look like spirals,10 therefore the ray length 
increases, as well as the phase change calculated 
along the rays. After the vortex annihilate, the rays 
are no longer spirals, but the phase increment caused 
by the spiral part keeps on. As a result, vortex 
backwash should be observed in the field of a light 
beam after vortex annihilation.  

The aim of this paper is to study the spatial 
distribution of the phase (wave front) of an optical 
beam after annihilation of optical vortices with the 
topological charge of the opposite sign. The paper 
consists of three parts. The first part is a methodical 
one. Here we derive equations for phase calculation 
by the ray trajectories and consider limitations and 
special features associated with their application in 
the case of a diffraction singular wave field, as well 
as the use of a parabolic wave equation. The second 
part presents the model of the simplest singular wave 
field, which lies in the foundation of further 
calculations. The third part considers regularities of 
the wave front evolution for a singular beam at the 
stage following the vortex annihilation. The 
possibility of wave front approximation by a smooth 
surface is discussed as well. 

 

1. Basic equations 
 

The propagation of a harmonic light wave 

U(ω, ρρρρ, z) exp {iωt} with the frequency ω through a 
homogeneous medium will be described using the 
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spectral amplitude U(ω, ρρρρ, z). Let us present it 
through real functions: amplitude A(ω, ρρρρ, z) and 
phase S(ω, ρρρρ, z): 

 U(ω, ρρρρ, z) = A(ω, ρρρρ, z) exp {iS(ω, ρρρρ, z)},  (1) 

where ρρρρ = {x, y} is a two-dimensional vector. The 
spectral amplitude of the field U(ω, ρρρρ, z) obeys the 
Helmholtz equation 

 ∆U(ω, ρρρρ, z) + k0

2
 U(ω, ρρρρ, z) = 0,  k0 = ω/c, (2) 

where c is the speed of light, ∆ = ∇∇ ; ∇  = ∇ ⊥  + n 
∂
∂z, 

∇ ⊥  = l 
∂

∂x + m 
∂

∂y. 

Omitting, for brevity, the argument ω in the 
above complex and real functions, write11 the system 
of equations equivalent to Eq. (2), but including the 
eikonal equations  

 {∇ S(ρρρρ, z)}2 = k0

2
 + ∆A(ρρρρ, z)/[A(ρρρρ, z)]  (3) 

and the transfer equations 

 ∇ {A2(ρρρρ, z) ∇ S(ρρρρ, z)} = 0. (4) 

Equation (4) can be written as follows: 

 div L(ρρρρ, z) = 0, (5) 

where L{L⊥ , Lz} is the energy flow  density vector 
(Pointing vector) with the components  

Lz = A2(ρρρρ, z) 
∂
∂z S(ρρρρ, z),  L⊥  = A2(ρρρρ, z) ∇ ⊥ S(ρρρρ, z). (6) 

The set of flow lines, along which the light energy 
propagates, gives the illustrative idea of the spatial 
distribution of the power flux. The flow lines are 
integral curves of the first-order differential equation 
 

 
dx
dz = 

Lx

Lz

,   
dy

dz = 
Ly

Lz

. (7) 

Considering z as an independent variable, we can 
write Eq. (7) as 

 
dρρρρ(z)

dz  = 
L⊥

Lz
. (8) 

For particular values of z the structure of phase 

space can be studied by specifying the field of directions 
 

 
dy

dx = 
Ly

Lx

 . (9) 

It follows from Eqs. (7) and definitions (6) that 
the energy flow lines coincide with the flow lines of the 
phase gradient. In other words, the direction of the 
Pointing vector coincides with the phase gradient, and 
all the flow lines of the phase gradient turn out to be 
the energy flow lines. The components of the phase 
gradient, in their turn, are components of the local 
wave vector  

 k{kx = 
∂

∂x S,  ky = 
∂

∂y S, kz = 
∂
∂z S}. 

The energy flow lines are determined almost 

everywhere in space except for singular points (lines), 
at which the light flux density (6) vanishes. Such 
points are the points of zero amplitude (intensity) of 
the field (dislocations) and saddle points of the phase 
surface, at which the phase gradient components 

vanish. The phase at the zero lines of the field is 

uncertain. At these lines, the phase potentiality is 
disturbed, and the areas of “defect” (singular) phase 
can be considered as vortical threads similarly to the 
areas of concentrated vorticity in the dynamics of an 
ideal fluid.12,13 For such vector fields, the field 
potential defined as  

 S(x, y, z) = S(x0, y0, z0) +
Γ
∫ ∇ S(x′, y′, z′) dr′, (10) 

through its initial value S (x0, y0, z0) and the 
curvilinear integral (circulation) along an arbitrary 

curve Γ connecting, without self-intersections, the 
starting r0{x0, y0, z0} and final r{x, y, z} points, is 
known to be generally a multiple-valued function. Its 
values depend, in the general case, on the shape of a 
curve, along which the integral is taken. Let us take 
the energy flow lines as such curves. Since only one 
flow line passes through every spatial point (no line 
passes through the zero points), each of these lines is 
unambiguously determined by the position of its 

starting point. Thus, calculating integral (10) along 
the flow lines and having known the initial phase 
value, we can assign a sole phase value at any point 
along the flow line. Since on the flow line the phase 
gradient vector and the unit vector tangent to the 
curve Γ have the same direction, Eq. (10) can be 
written as  

 S(r) = S(r0) + 
Γ
∫  |∇ S(r′)| dr′ . (11) 

And with the coordinate z used as an independent 
variable and taking into account that the length of 

an arc element is dr = dx2 + dy2 + dz2, Eq. (11) 
can be transformed to the form  

 S(ρρρρ, z) = S(z0) + 

+

0

z

z

∫ 2 2 2[ ( ), ( ), ] [ ( ), ( ), ] [ ( ), ( ), ]x y zk x z y z z k x z y z z k x z y z z′ ′ ′ ′ ′ ′ ′ ′ ′+ +  × 

 × 1 + 



dρ(z′)

dz′  

2 

dz′.  (12) 

Eikonal equation (3) can be considered as the 
equation of the surface of wave vectors,11 which is a 
sphere at any spatial point 

 kx

2

 + ky

2

 + kz

2

 = k0

2

 + ∆A(ρρρρ, z/[A(ρρρρ, z)]. (13) 

Only in the case of a plane wave this sphere has 
a constant radius k0. For an arbitrary field its value 
varies from point to point. Therefore, for determination 
of the wave vector component kz from the two other 
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components as in many problems concerning wave 
propagation, in the case of an arbitrary wave field one 

should use equality (13), rather than the condition kx

2

 + 

+ ky

2

 + kz

2

 = k0

2

,  which  is  valid only for plane waves. 
Let the considered wave field be so that if the 

phase is represented in the form  

 S(ρρρρ, z) =k0 z + S′(ρρρρ, z) (14) 

and, correspondingly, its derivative is  

 
∂
∂z S(ρρρρ, z) = k0 + 

∂
∂z S′(ρρρρ, z), (15) 

then the following inequality is fulfilled  

 
∂S′
∂z  <<  k0, (16) 

which means that the phase S′ varies only slightly at 
the wavelength. If, in addition, we can neglect 
diffraction in the longitudinal direction, assuming 
that the following inequality is valid: 

 
∂2

∂z2  A(ρρρρ, z) /[A(ρρρρ, z)] <<  k0

2

, 

then the wave propagation can be considered in the 
approximation of the parabolic equation  

 2ik 
∂V
∂z  + ∆⊥ V = 0, (17) 

where 

 V(ρρρρ, z) = U(ρρρρ, z) exp {–ik0 z}. 

Within the framework of this approximation, the 
eikonal and transfer equations have the form  

 2k0 

∂S′
∂z  +{∇ ⊥ S′}2 = 

∆⊥ A(ρρρρ, z)
A(ρρρρ, z)  ; (18) 

 ∇ ⊥  {A
2(ρρρρ, z)∇ ⊥ S′} = – k0 

∂A2

∂z  . (19) 

Fulfillment of equalities (14) and (15) means that 
the wave vector k can be represented in the form 

k = k0n + q, where q{qx = 

∂
∂x S′, qy = 

∂
∂y S′,

 

qz = 
∂
∂z S′}. 

In the quasioptical approximation,14 the surface 
of the wave vectors is approximated by a paraboloid  

 2k0 qz + qx

2

 + qy

2

 = ∆⊥ A(ρρρρ, z)/[A(ρρρρ, z)], (20) 

and Eq. (12) is transformed into the following equality: 
 

 S(ρρρρ, z) = S(z0) +
0

z

z

∫ [k0

2 

 + qx

2

(z′) + qy

2

(z′)] × 

 × 








1 + 



dρρρρ′(z′)

dz′  

2

 dz′, (21) 

where 

 
dρρρρ′(z′)

dz′  = 
∇ ⊥ S′
k0

 = 
q⊥

k0

 . (22) 

For the plane waves it was found14
 that the 

spherical surfaces of the wave vectors are well 
approximated by paraboloids, if, in addition to 
condition (16) ( qz /k0 <<  1), the condition of 
small angles  

  q⊥  /k0 < 1 (23) 

or the condition of a pencil beam is fulfilled as well. 
Let us show that for the wave field in the vicinity of 
an optical vortex the latter is not fulfilled. For this 
purpose, select the solution of Eq. (17) in the form 
V(ρρρρ, z) = x + iy, wherefrom we have A(ρρρρ, z) = 

= (x2 + y2). Then Eq. (20) for the surface of wave 
vectors degenerates into the equation of a circular 
cylinder  

 qx

2

 + qy

2

 = 
1

(x2 + y2)
 , (24) 

whose radius (and the value of the local cross wave 
vector) increases unlimitedly as the observation point 
approaches the center of the optical vortex. This 
means that the energy flow near the vortex axis is 
directed at a large angle to the beam axis. In this 
connection there is a risk of concepts substitution. 
Thus, if we assume that a pencil beam is a beam, in 
which the energy propagates only at small angles to 
the axis, then our singular beam cannot be considered 
as a pencil beam. Therefore, there are some doubts in 
the correctness of description of singular wave fields 
by the parabolic equation, because it is commonly 
known that the parabolic equation works well only 
for pencil beams. These doubts can be dispelled if we 
consider resolution of our elementary singular field in 
the spectrum of plane waves. Actually, requirement (23) 
is formulated only for plane waves. For the ν(κκκκ⊥ )-
dimensional spectrum of the “slow” function x + iy 
we have  

 ν(κκκκ⊥ ) = 
1

4π2

∞

−∞
∫ (x + iy) exp(–iκκκκ⊥ ρρρρ) d2ρ = 

 = – δ(κx) δ′(κy) + iδ′(κx) δ(κy), 

where κκκκ⊥  = {κx, κy}, δ(κ) and δ′(κ) are the Dirac delta 
function and its derivative, respectively. The equality 
obtained means that the spectral resolution of our 
function is nonzero only on the axis z, that is, our 
singular beam is a pencil beam.14 Thus, the unlimited 
increase of the cross components of the phase 
gradient (components of the cross wave vector) is not 
a signal of the need in some limitations in the 
application of the parabolic equation just near the 
center of the optical vortex. Such a limitation can be 
accepted only to simplify Eq. (21), which takes the 
following form if Eq. (22) is fulfilled 

 S(ρρρρ, z) = S(z0) + 

 + k0

0

z

z

∫ 






1 + 
1
2 



dρρρρ′(z′)

dz′  

2

 dz′. (25) 
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2. Model of the field  
with optical vortices 

 
As an object for study, let us take the Laguerre–

Gauss beam with a complex field amplitude of the form 

 V(x, y, z) = 
Ω

(1 + Ω2)3 exp 



− 

Ω2

2a2 
(x2

 + y2)

(1 + Ω2) + 

 + i 


Ω (x2 +  y

2)

2a2(1 + Ω2)  (Vr + iVi)(1 + i Ω)3, (26) 

where  

 Vr = –3 + 2Ω – Ω2 + 2 
Ω2

a2  (x2 + y2 – xy), 

 Vi = 3 + 2Ω + Ω2 – 2 
Ω2

a2  (x2 + y2 + xy), 

Ω = k0à
2/z is the generalized diffraction parameter; a 

is the beam radius. Let λ = 0.63 µm, a = 0.05 m. As 
was shown in Ref. 10, dislocations in the laser beam 
with such parameters exist already at the output from 
the laser (z = 0), then they annihilate at the diffraction 
parameter Ω = 3 and revive at Ω = 1. The stages of 
transformation of the singular field (26) have been 
thoroughly described in Ref. 10; therefore, in this 
paper we consider the formation of the wave front of 
a laser beam after annihilation of dislocations. 

3. Lines of energy flow and formation  
of wave front of laser beam after 
annihilation of optical vortices  

 

Let us first present the distribution of the intensity 
I(ρρρρ, z) = A2 and the main (in the interval [–π, π]) 
phase values at the laser beam entrance Ω = 5.0 
(z0 = 5 ⋅ 103) and in the plane z1 corresponding to the 
diffraction parameter Ω = 2.5 (z1 = 104) as calculated 
by Eqs. (26). These data are given in the first and 
second columns in Fig. 1. The third column depicts 
the directions of ray propagation in the cross plane 
xOy with the given value of the longitudinal 
coordinate z (the field of directions of the Pointing 
vector or the phase gradient) as calculated by 
Eq. (9). Recall 

10 that dislocations annihilate through 
bifurcation of singular points: a pair of unsteady 
focuses (Fig. 1a) – a pair of steady–unsteady node 
(Fig. 1b). 

The phase distribution shown in Fig. 1 was 
calculated from the complex amplitude of the  
field (26) as the main value of the argument of this 
function 

 s~(ρρρρ, z) = arg [V(ρρρρ, z)] . (27) 
 
 

 

–2 –1 0 1 –2 –1 0 1 x/a –2 –1 0 1 
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–1 

0 

1 
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Fig. 1. Distribution of intensity, main phase value, and field of directions in the cross plane in the presence of dislocations 
Ω = 5.0 (à) and after annihilation of dislocations Ω = 2.5 (b). The positions of singular points are shown as     for focus,    for 
node, and     for saddle. In the first column of Fig. 1b the shaded area corresponds to vortex backwash. 
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Calculate now the distribution of the complete 
phase in the plane z1 using Eq. (21) and the phase 
distribution in the plane z0 as the initial one. The 
necessary stage in calculation of the complete phase is 
calculation of the lines of energy flow or diffraction 
rays, which were drawn through numerical solution of 
Eqs. (22) by the Euler method with automatic step 
selection. The family of rays going from the plane z0 
spirals around the trajectory of the optical vortex as 
shown in Fig. 2. This vortex is marked by the sign ⊕  
in Fig. 1. One can see that after annihilation of optical 
vortices having opposite signs the spiral trajectory of 
the rays becomes close to the straight line. It should be 
noted that in the calculations we controlled fulfillment 
of condition (16) of applicability of the parabolic 
approximation and in the calculations of the complete 
phase we used only the rays for which the condition 
∂ S′/∂z≤  0.1k0 holds. In addition, we restricted our 
consideration to the rays, at which the condition of 
small angles (23) was fulfilled (they were far from the 
singular point). So when calculating the complete phase 
we could use Eq. (25). The absolute error in calculation 
of the phase change by diffraction rays was 0.01π. 
Figure 3 depicts the distribution of the complete phase 
calculated by Eq. (25) for the plane z1 = 10000 m 
(Ω = 2.493). This distribution corresponds to the two 
joint families of the lines of energy flow. Each of the 
rays comprising these families in the process of the 
spatial beam evolution spirals around the trajectory 
of the corresponding optical vortex (field zero-line) 
and after annihilation of these vortices moves 
translationally to the beam periphery. Note that the 
values of the complete phase on the rays comprising 
these two families significantly exceed the phase 
value in the adjacent areas. Then the phase 
calculated was used to draw the wave front surface 
using the condition S(ρρρρ, z) = const. 
 

 

Fig. 2. Diffraction rays near the wave front dislocations. 

 
Fig. 3. Phase distribution after annihilation of dislocations. 
The plot corresponds to the complete phase minus k0z 
normalized to π. 
 

The general view of the wave front after 

annihilation of optical vortices corresponding to the 
eikonal of 104

 (the eikonal value is the phase normalized 
to k0) is depicted in Fig. 4a. The wave front 
fragment (Fig. 4b) corresponds to the area bounded 
by a circle in Fig. 4a. The diffraction rays along which 
the phase has been calculated are also shown here. 

Rays 1, 2 and 3 originate from the points with  
the coordinates {–0.696; –0.365}, {–0.690; –0.291},  
{–0.691; –0.292}, respectively, in the plane z0 = 
= 5 ⋅ 103 m. The coordinates x and y are normalized 
to the initial beam radius. Ray 2 is at minimum 
distance from the vortex center (≈ 500λ). It follows 
from Fig. 4a that after annihilation of optical vortices 
the wave front surface no longer has a helicoid shape. 
However, it does not become smooth as was believed 
before, but keeps singularities. These singularities 
move to the beam periphery with the increasing 
longitudinal coordinate. If we define the vortex 
backwash area as the area, in which the complete 
phase exceeds the total value of the “fast” k0z and 
“slow” s~(ρρρρ, z) phases by more than π radians, then we 
can find the fraction of energy contained in the vortex 
backwash areas of the singular field. To do this, it is 
sufficient to integrate the intensity distribution 
within the vortex backwash areas (Fig. 1b) and 
relate the obtained value to the total beam energy 
P0. Since the energy of the vortex backwash areas is 
formed due to small intensity values near zero-lines, 
we should expect proportionally small values of the 
energy contained within these areas. Thus, for the 
situation shown in Fig. 1b the fraction of energy 
contained in the vortex backwash areas is only about 
2% of the total beam energy. The size of this area 
turns out to be comparable with the effective scale of 
the Gaussian in Eq. (26). Note that if we introduce 
the effective beam size ρå as 

 ρ
2

å = 
1
P0

∞

−∞
∫ I(ρρρρ) ρ

2

d
2

ρ, 

then from Eq. (26) we get ρå(z0)/a  = 1.84 and 

ρå(z1)/a = 1.91. 
The vortex backwash area can also be localized 

using such wave front characteristics as the mean 

h(ρρρρ, z) = –∆⊥ S′/(2k0) and Gaussian curvatures 

15 

p(ρρρρ, z) = 

1

k 0

2  
 ∂2

∂x2 S′ 
∂2

∂y2 S′ – 






∂2

∂x ∂y S′  

2

 , which allow 
 

y 

z 

x 
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a b 

Fig. 4. General view of the beam wave front; z′ = z – z1. 
 

 
 a b 

Fig. 5. Distribution of the mean curvature (a) and Gaussian curvature (b) of the phase front in the plane z1 = 104 m. Cross 
sections of these functions by two planes parallel to the coordinate planes xOz (solid line) and yOz (dashed line) intersecting 
at the center of the vortex backwash area are depicted. 

 

us to evaluate the possibility of locally approximating 
the wave front by a second-order surface. These 
functions should obviously be singular in the area of 
existence of optical vortices, but the calculations show 
that these functions keep their singular behavior even 
after annihilation of the vortices. The cross sections 
of the mean and Gaussian curvatures of the wave 
front in two mutually normal planes intersecting each 
other at the center of the vortex backwash area are 
depicted in Figs. 5a and b, respectively. 

It follows from Fig. 5 that as the observation 
point approaches the center of the vortex backwash 
area, the wave front curvature increases unlimitedly 
in the absolute value, which means that the zone of 
the wave front surface, which can be approximated 
by a second-order surface, tends to vanish. 

Despite our study of the vortex backwash effect 
has been performed for the simplest field with optical 
vortices taken as an example, this effect obviously has 
the general character and it should be taken into 
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account when dealing with all singular fields, in 
which vortex annihilation occurs. In particular, this 
effect should be taken into account in developing 
principles for construction of single-mirror and many-
mirror adaptive optics systems operated based on the 
phase conjugation method under conditions of strong 
turbulence.16–18 This applies, in particular, to the 
idea 

6 of using, for phase compensation of screw-type 
dislocations, of two flexible adaptive mirrors, first 
for annihilation of optical vortices with the opposite 
signs and second for reversal of the already smooth 
wave front. 

 

Conclusion 
 

Thus, using the simplest example of the singular 
wave field containing optical vortices, we have 

demonstrated and studied the vortex backwash effect 
consisting in that the annihilation of optical vortices 
with the opposite topological charge, which is one of 
the stages of the vortex life cycle in a singular 
optical beam, does not lead, as was believed before, 
to transformation of the singular wave front into the 
smooth one. 

Despite the fact that field zeros and screw wave 
front dislocations vanish, the wave front near 
localization of the family of rays taking part in the 
beam spiral propagation around the field zero-lines 
still keeps singularities that consist in significantly 
larger wave front tilts and complete phase in such 
local areas as compared to the corresponding values 
of the tilt and phase in the adjacent regions. The 
absolute values of the mean curvature and Gaussian 
curvature of wave front parts in the vortex backwash 
areas increase unlimitedly.  

The trail of annihilated optical vortices holds, 
drifting to the beam periphery in the process of the 
following propagation. This leads to the need of taking 
the vortex backwash effect into account in developing 
adaptive optical systems for compensation for beam 
distortions under conditions of developed speckle 

fields, in particular, in the turbulent atmosphere. 
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