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Synthesis of wavelet basis for analysis of optical signals.
Part 2. Biorthogonal and complex wavelet bases
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An algorithm for synthesis of biorthogonal and complex wavelets is described in detail.
Examples of signal restoration and compression based on wavelets constructed are presented.
Similarity of these wavelet bases to the Karhunen—Loeve basis is considered. A pattern of
spatiotemporal development of a random signal over inhomogeneity scales is presented. Examples of
expansion and compression of two-dimensional signals with filtering by directions are presented.

Introduction

In the first part of this paper, the orthogonal
wavelet basis for analysis and synthesis of signals was
considered.! When synthesizing an orthogonal basis,
the number of symmetric wavelets at a fixed wavelet
carrier is limited. In contrast to synthesis of
orthogonal wavelets, synthesis of non-orthogonal
wavelets has much more freedom in selection of the
shape, smoothness, symmetry, and such important
criteria as localization and the number of zero
moments, that 1is, the class of non-orthogonal
wavelets is much wider. In this part of the paper, the
algorithm for construction of non-orthogonal
wavelets similar to the statistically optimal
Karhunen—Loeve basis? will be considered in detail
and the algorithm will be presented for construction
of complex wavelets, which are useful in analysis and
synthesis of the amplitude and phase of optical
complex signals. In conclusion, the processing of
two-dimensional signals will be demonstrated.

Theory
When resolving a signal f(x) in a non-
orthogonal wavelet basis, it is necessary to have two
bases: the wavelet W(x), with respect to which the

signal is resolved, and the dual wavelet ¥(x), which is
used to determine the resolution coefficients, that is,

flx)= icjkll’jk(x) ) 1)
&
Here ¥;(x) = 91 ‘P(Zi].x — k);
cir =Afs qf]-k> = o]‘f(x) ‘fijk(x) dx, 2)
and the following equatiorl is fulfilled:
(s T = By But (3
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where 3, ; is the Kronecker symbol. The wavelets ¥
and ¥ are called biorthogonal and are formed based
on scaling functions ¢ and @, which obey the two-
scale equations

N N
9o() = ) pp o — k), $x) = NP 52 — k). (4)
k=0 k=0

The upper summation limits N and N are the carriers
of the functions ¢ and @, respectively, that is,
N =supp o(x) and N =supp ¢(x). After the
coefficients p, and pj, are determined from Egs. (4),
it is possible to find ¥ and ¥ as
N
() = D DM Poex — k),

k=0

N
Px) = Y DM, Q2x — k). (5)
k=0
Thus, to find the wavelets ¥ and P, it is

necessary to determine the coefficients p, and P in
Egs. (4). To do this, write the resolutions (4) in the
frequency region

N
300 = a0/ D 5 Y py expl—jki/2),
k=0
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where

500 = 37 o ep(mo) d,

—0o0

and introduce designations for filters
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1 &
m(x) = 3 D Pk exp(—7kx/2),
k=0
1 &
(k) =5 Zﬁk exp(—jkk/2). 7
k=0

Fulfillment of the orthogonality condition (3) for ¥

and ¥ is equivalent to fulfillment of the following
conditions for filters®*:

m(x) m(x) + m(x +n ) m(x + ) = 1. (8)

The overbar denotes a complex conjugation.

If m(x) is taken as a filter, then, solving
Eq. (8), we can find (k). Before explaining how to
solve Eq. (8), let us digress for a moment. In
Introduction, it was stated that, when compressing
an image, it is desirable to have wavelets with a large
number of zero moments. Explain this briefly. Let a
signal f(x) be expanded into a series

N .
)= cp 27 w7 x — k). (9)

jk

If we expand the signal f(x) into the Taylor series in
the vicinity of the point k, then we can obtain

f(x) = f(R) + f[(R)(x — k) +
+ % [ — kP + .+ % G — R+ .. (10)

If we multiply this equation by ¥(27x — k) and
integrate, then, the terms, for which the relation

I@(x) x"dx =0 (11)

is fulfilled, will be apparently removed from the
series. The terms of the higher order of smallness in
Eq. (10) are negligibly small. During signal
compression, the coefficients (significant) are sorted
above some threshold value. Obviously, the larger is
the number of zero moments, the better is the signal
compression, that is, the smaller is the number of
coefficients for signal presentation. In this sense, the
symmetric wavelet basis is close to the optimal
Karhunen—Loeve basis.? The similarity shows itself
in the fact that the Karhunen—Loeve basis has some
uncorrelated coefficients, while the wavelet basis has
weakly correlated expansion coefficients, and this is a
criterion of good compression. Weak correlation of
the wavelet Dbasis is explained by the fact that
carriers of basis functions (closing of sets, in which
functions are nonzero) are spatially (or temporally)
separated. Coming back to Eq. (8), it should be
noted that it allows one to synthesize wavelets with
any number of zero moments. Present the algorithm
for synthesis of a wavelet with the needed number of
zero moments.

To construct the wavelets ¥ and ¥ means to

find m(x) and (k). Select m(x) in the form

Yu.N. Isaev

m(x) = cos"(x /2 ) P[sin*(x/2)], (12)

if n is even, and in the form
m(x) = exp(jx/2) cos"(x/2)P[sin*(x/2)], (13)
if » is odd. In this equation, n is the power of the

1
first term cos” (E k); it determines the number of zero

moments in the wavelet under construction,® and
P(x) is some polynomial. With the form of m(x)

selected, we will find the solution for (k) in the
form

(k) = cos’(x/2) P[sin*(x/2)], (14)

if » is even, and in the form

(k) = exp(jx/2) cos’(x/2) P[sin*(x/2)], (15)

if n is odd.

Introduce the following designations
x =sin*(x/2) and (1—x)*? P(x) = #(x) and substitute
Eq. (12) or (13) and, respectively, Eq. (14) or (13)
into Eq. (8). As a result, we obtain the Bezout
equation®:

(x = DVBx) +12NB(1 —x) =1,

where B(x) = P(x) P(x); N = (s + n)/2. The general
solution of the Bezout equation has the following
form:

N-1 .
Bx)=Y CIN+k—1, k)" + 2" flx — 1/2), (16)
k=0

where C(N,k) is the number of combinations of k of
n elements; f(x) is any odd function. The first and
second terms of Eq. (16) are the particular and
general solutions of the inhomogeneous Bezout
equation, respectively. Taking different N and f(x) at
the selected m(x), in accordance with Eq. (16), we

obtain a quite certain equation for (k). Present a
specific example for even and odd N. Selecting
N =3 and f(x) = x + x°, we have

B(x)=1+3x+622+2°[x —1/2+(x—1/2)°]. (17)

Determine the roots of Eq. (17) and write it in the
factorized form

3
B(x) = A ]G = 2Re(zp) +12;1%,  (18)
j=t

where A is a constant, which can be easily found by
dividing Eq. (17) by Eq. (18); in our case A = 1;
zj = Re(z;) + jlm(z;) are three pairs of complex
conjugate roots:

zy = — 0.4763090739 — 71.2303119751, z, = z,
z3 = — 0.2533865279 — 70.30248926121, z; = z3,
z5 = —1.47969571803 — j1.22491119812, zg = zs.
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Then select
P(x) = (& — 2Re(2y) +|2,|), n =5, (19)

m(x) = exp(jx/2) cos’(x/2) P [sin*(x/2)], (20)

then /(x) can have the unique form
P(x) = (2% — 2Re(zy) +|z; %) x
x (1% — 2Re(z3) + |23]%), s =1, (21)
(k) = exp(jx/2) cos(x/2) P [sin®(x/2)].  (22)

Expand m(x) and m(x) into the Fourier
series (7) and obtain ten coefficients pj and ten Py, for
the scaling function ¢(x) (Fig. 1a) and the dual
function §(x) (Fig. 1b), respectively. Expansion into
the Fourier series can be obtained by using the
trigonometric formulae

]'x+ —jx\ 1 jx_ —jx\ 1
cos(x) = (% , sin"(x) = % ,

but it is much easier to perform Fourier series
expansion in the Mathcad environment. Then,
following the algorithm described in the first part of
this paper,! we can construct the scaling function and
the corresponding wavelets. The wavelets ¥ and P,
as well as their scaling functions are plotted in
Figs. 1a and b. To construct the next pair of
wavelets, n =3 in Eq. (19) and s =3 in Eq. (21)
should be taken. In this case, expanding m(x) and
m(x) into the Fourier series (7), we obtain twelve
coefficients p, and ten coefficients pp. The scaling
functions and wavelets corresponding to these
coefficients are depicted in Figs. 1c and d. If we take
n =25, s =1 and move the root z; from Eq. (21) into
Eq. (19), then we obtain the coefficients and the
corresponding scaling functions plotted in Figs. 1e
and [.

Dwell now on the example for even N = 4. In
this case, the solution of the Bezout equation will
look as:

B(x) =1 + 4x + 10x° + 202° + x* flx — 1/2). (23)

Take the odd function f(x) = x + x° as f(x). Find the
roots B(x) and write them in the factorized form

3
B(x) = Ax — xp) J(+* — 2Re(z)) +12;?).  (24)
j=1

In this case, we obtain one real root xy=
= —0.3378926514 and three pairs of complex
conjugate roots z; = Re(z;) + jIm(z)):

zy = — 0.9055499544 — j1.581306455, 2z, = z,
z3 = — 8.1141156107-107% — j0.3725006021, 24 = z3,
25 = 1.9056374362 — j1.5814099917, z = zs.
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Now we can write the equations for (i) and
m(x) in the form (12) and (14), respectively, where
P(x) and P(x) are different combinations of factors of
Eq. (24). Expanding the filters m(x) and m(x) into
the Fourier series, we obtain the coefficients p, and
Pr. Some possible versions of solutions for even and
odd N are shown in Fig. 2.

Note that at fixed N the class of possible
solutions can be extended by changing the form of
the function f(x), but the carriers of the wavelet and
its scaling function in this case increase.

Consider then resolution of a signal in the bases
obtained. Figure 3 depicts the model signal (Fig. 3a)
and its wavelet resolution (Figs. 3b—d).

The wavelets shown in Fig. 1a (the number of
zero moments s = 3) and Fig. 2d (s = 6) are taken as
a basis. Figures 3b and c illustrate restoration of a
signal with compression for the wavelet with s = 6;
Fig. 3b corresponds to 32 coefficients of 256, and
Fig. 3¢ — to 128 coefficients of 256.

Figures 3d and e show the same, but for the
wavelet with s = 3. As would be expected, a better
signal compression and restoration (and, consequently,
a smaller number of coefficients in the series) were
needed for the wavelet with a larger number of zero
moments s = 6.

For the wavelets obtained, I have checked the
criterion of localization, which is expressed as

A Ak (25)
where
B .ﬂ‘I’(x)‘z (x = xp)du
- ﬂT(x)‘z dx

Ax

B .ﬂ‘f’(K)f(K — ko) dk

— (26)
ﬂW(K)‘ dx

Ax

As the number of zero wavelet moments increases,
the inequality (25) fast tends to the equality. That is,
wavelets are modulated by the Gaussian function, so
they approach the eigenfunctions of the Fourier
operator® and become optimal by the criterion (25).
This means that the signal of a limited length with a
fixed number of the terms in the series has the highest
energy, if it is presented by the wavelet basis meeting
the equality (25), and this is one more similarity to the
Karhunen—Loeve basis. With such wavelets, it is
convenient to search the hidden periodicity in signals
under study and to determine their multifractal
structure.

Consider the wavelet resolution of a random
signal — the wind velocity shown at the top of Fig. 3f
— with the wavelet shown in Fig. 2c¢ as a basis.

Absolute values of coefficients of wavelet
resolution of the random signal (wind velocity) are
shown at the bottom of Fig. 3f. This pattern
demonstrates relative contribution of different-scale
inhomogeneities to formation of a signal.
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It can be seen from the figure that large-scale
inhomogeneities break into smaller ones, which, in
their turn, also break into even smaller ones, and this
cascade process continues up to the smallest fraction
of inhomogeneities, as indicated by the characteristic
branching — “forks.” This example demonstrates a
similarity of a random signal to a multifractal
structure of the inhomogeneous Cantor series, so the
signal propagation medium can be described by a
power spectrum of k* type, if we assume that o is a
function of k. We succeeded in obtaining such a
physical pattern of inhomogeneities due to fractal
properties of the wavelet scaling functions, that is,
Eq. (4), whose meaning is demonstrated graphically
in Fig. 3g, where for simplicity the trapezoidal
function is taken as a scaling function:

o(x) = % o(2x) + % oQ2x — 1) +

+3 (20— 2) + 3 9(2x — 3). ©7)

Each trapezium consists of four similar
trapeziums, and this cascade process (resembling the
process of interaction between vortices in a turbulent
process) can be infinitely continued in the both
directions: to increase or decrease of the trapezium
dimensions. It can be easily noticed that this basis
more adequately corresponds to the structure of a
turbulent flow and, consequently, more adequately
describes it.

In some cases, it is convenient to analyze the
amplitude and phase of an optical signal in its
complex presentation. In this case, complex wavelets
are convenient for resolution. The scaling function
¢(x) in this case has complex coefficients, and the
dual function is the conjugate function

Px) = o). (28)

Let us present the algorithm for synthesis of complex
wavelets. Given is the real part of coefficients in
Eq. (4), whose sum is equal to unity, for example

Re(po) = Re(py) = Re(ps) = Re(ps) =5 . (29)

Then we find the imaginary part of the coefficients
Im(p,) from the equation of orthogonality (8) with
allowance for the condition (28)
1 .1 1 1
Po=p3=73% 1%, P1=p2=71—1%-

After determination of the coefficients, find the
scaling and wavelet functions using Egs. (4) and (5),
respectively. Complex wavelets can be obtained in
the same way, using the complex solution of the
Bezout equation. For example, at N = 3 the solution
can be written in the form

3
B(x) =A [Jx —z) (x — 2,

j=t

(30)

31

then the equations for the filters m(x) and m(x) will
include various combinations of complex factors from
Eq. (31). Figure 4 depicts the wavelets obtained by
the algorithm described.
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Enlarged fragment izontal B
resolution of the second level

Image compression

Fig. 5.

Present an example of using the wavelet basis
for processing two-dimensional images. Having
written the tensor product of one-dimensional
wavelets, we get the equations for three two-
dimensional wavelets

Y, y) = o(x) W), ¥(x,y) = ¥ oly),
wiry) = e(0)e(y). (32)

This representation is convenient, because the image

is filtered in the horizontal, vertical, and diagonal
directions, and the corresponding wavelets are

marked by the superscripts. Through shifts and
compression, we obtain the basis

\Pj,n1,n2 (X,y) = 27] \P(zijx — n1, 27]‘y — 722) (33)

All equations (1)—(5) presented for the one-
dimensional case remain correct for the two-
dimensional basis. The wavelets presented here and in
Ref. 1 were obtained in the Wavelet Toolbox GUI
(MATLAB 6.1), which significantly facilitates the use
of wavelets for synthesis and analysis of two-
dimensional images. As an example of Wavelet
Toolbox operation, Figure 5 (bottom) presents an
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example of compression of a 2-D image with the
wavelet shown in Fig. 2b. The initial number of the
coefficients was 256 x 256 and then it was halved. To
separate the edge effects in the image with allowance
for the direction, take the wavelet shown in Fig. 6b
from Ref. 1. The results of reconstruction shown in
Fig. 5 (top) clearly demonstrate the useful property
of wavelets to filter by directions.

Conclusion

This paper presents the groups of new
biorthogonal and complex wavelets, as well as the
algorithm for their synthesis, along with the examples
of synthesis and analysis of model signals. It is
shown possible to visualize the fractal structure of
the signal and the scales of inhomogeneity of the
signal propagation medium using the wavelet
resolution coefficients. The useful properties of the
obtained wavelets to filter by directions and to
separate a fine structure of an image are
demonstrated.
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