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The structure of lidar equation is analyzed in the small-angle approximation taking into account
multiple scattering of light. To describe lidar return signal in this approximation, the scattering phase
function is modeled as a sum of diffraction and geometric-optics components. A method is proposed for
separation of the diffraction and geometric-optics components of the return signals. It is shown that, at
large receiver’s field of view, this allows the information about the diffraction component of the
scattering phase function to be replaced by its Hankel transform at zero point.

Introduction

In laser sensing of optically dense media, the
contribution of multiple scattering to lidar echo depends
both on optical characteristics of the medium (extinction
coefficient, single scattering albedo, scattering phase
function) and on the parameters of the experiment
geometry. Among the latter, the receiver’s field of view
and the distance from a lidar to a scattering volume are
at the first place. In the general case, it is rather
difficult to take into account the contribution coming
to the lidar echo from multiple scattering. This problem
involves solution of the radiative transfer equation
(RTE), and difficulties of its solution increase especially
at interpretation of lidar experiments. Various aspects
of this problem have already been discussed for a long
time at international conferences on laser sensing,
including the International Workshop on Lidar Multiple
Scattering Experiments (MUSCLE).

Among various approaches to solving this problem,
I would note the methods based on the use of the
small-angle approximation in solving the RTE.1=4 These
methods give a relatively simple analytical description
for a lidar echo signal with the allowance for multiple
scattering in the case of strongly forward-peaked
scattering phase function. In Refs. 3 and 5 it was shown
that in this case the lidar equation becomes significantly
simpler at the large receiver’s field of view. The small-
angle scattering phase function in this case is replaced
in the lidar equation by the derivative of its Hankel
transform at the zero point, and the behavior of the lidar
return acquires the asymptotic character. In atmospheric
optics, the scattering phase function can often be
presented as a sum of the diffraction (D) and geometric-
optics (GO) components. However, the information
about the GO component of the lidar signal is lost in
the asymptotic approximation.3>
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In developing the approach considered in Refs. 3
and 5, we obtain, in this paper, a modified description
of the lidar signal that overcomes the above disadvantage.
The method proposed is based on solving the RTE for
D and GO components separately with the following
application of the asymptotic equation only to the D
component. This makes it possible to obtain more
accurate description of the lidar return behavior at large
receiver’s field of view and, consequently, more accurate
solution of the inverse problems in lidar sensing of
optically dense media.

1. Lidar equation with regard
for multiple scattering in the small-
angle approximation

Assume that the scattering medium is characterized
by a strongly forward-peaked scattering phase function
and its optical characteristics depend on only one
spatial coordinate z. Assume also that both the source
and receiver of laser radiation are in the plane z = 0;
their optical axes coincide and sensing is conducted
along the Oz axis. As in Refs. 3 and 5, we are starting
with a simplified model of the lidar return, in which
scattering at large angles, including backscattering, is
taken into account only in the single-scattering
approximation, while multiple scattering is considered
in description of sensing pulse propagation from the
source to the scattering volume and from the scattering
volume back to the receiver within the nonstationary
RTE in the small-angle approximation.

With these assumptions, in the case of a point
unidirectional (PU) source emitting §-pulses with the
unit energy at ¢ =0, we can obtain the following equation
for the power of the lidar return coming at the time
t =2z/c to the receiving system of a monostatic lidar:
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P(2)=52 25 B (2)(zro) [1i(var )F (v, (1)
0

where

z

F(v)=exp[-21(2)+g(v)], t(2)= |e(s)ds, 2)
0

g(v)=2 |o(z-5)Z(vs)ds; (3)
0

S, and y, are the receiver’s area and the field of view;
J1() is the first-kind first-order Bessel function; B.(z)
is the backscattering coefficient; F(v) is the optical
transfer function (OTF) for a stationary source in a
fictitious medium, whose extinction and scattering
coefficients are twice as large as their actual values £(z)
and o(z). The OTF F(v) also depends on the small-
angle scattering phase function x(y), which enters into
the equation for the function g(v) (3) as a Hankel

transform x(.).

The known lidar equation in the single scattering
approximation follows from Eq. (1), if it is assumed
that g(v) = 0 in it:

Pi(2)=52725, By (2)e 27). (4)

Equation (1) generalizes the ordinary lidar equation (4)
with the allowance for the contribution from multiple
scattering in the small-angle approximation of the
radiative transfer theory. The initial lidar return P(z)
given by Eq. (1) can be expressed through the single-
scattered signal P{(z) by including an extra term m(z)
in the form

P(2)=P{(D)[t+m(2)]. (5)

The function m(z) describing the ratio between the
multiple- and single-scattering components is determined
as follows:

0

m(z7yr):2‘/r J.]1(szr)(eg(v)_1)dv~ (6)
0

The ratio m(z, y.) increases monotonically as a
function of the receiver’s field of view 7y, and tends to
the limit m, = exp(2At) — 1 at y, — o, where A = o/
is the single scattering albedo. It is seen from the latter
equation that at some optical depth and large receiver’s
field of view vy, the contribution from multiply-scattered
radiation to the lidar return may become dominant,
tens times exceeding the single-scattering signal.

As is shown in Refs. 3 and 5, at a rather large
receiver’s field of view, the behavior of the function
m(z) given by Eq. (6) acquires the asymptotic character
and can be described by the following equation:

m(z) = (N _ ) = 2N £y 7)
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where

A(z):—m Isa(z—s)ds. €
ZYr 0

It can be seen from Egs. (7) and (8) that at large
v, the lidar return P(z) [Eq.(5)] depends only on
the Hankel transform of the small-angle scattering
phase function at the zero point, rather than on this
function itself.

Because of the particular role of the derivative

%'(0) in the further reasoning, let us briefly analyze the
model of the scattering phase function in the problem
considered. In problems of atmospheric optics related to
scattering by large particles, for which krlm— 1] >1,
where 7, m are the particle radius and refractive index,
k=2rn/X, and A is the radiation wavelength, the
scattering phase function can satisfactorily be described
as a superposition of the two main components:

1(1)=a 5P (1) 40 62O ),

a® —gD /5 4(GO) _5(GO) /¢

9

The one is caused by light diffraction on particles,
and the other one obeys the geometric optics law. In
the case of spherical particles, the diffraction component
xM)(y) is described by the known Airy equation,6
while the geometric-optics component x(GO)(y) in the
region of small-scattering angles can be approximated
by the linear combination of the exponential and
Gaussian functions?:

x(GO) (y)=¢ie~w +62e*ﬁ“/2, (10)

in which the parameters ¢y, ¢y, o, and B depend on the
refractive index of the particulate matter. For the
considered model of small-angle scattering phase
function, the product

2AF(0)=[F P (0)]'=-2/ (nkRus¢) a1

is determined only by the diffraction component of the
scattering phase function being independent of the
geometric-optics component. In Eq. (11) Ry is the
effective particle radius.

One of the advantages of using the extra term
m(z) in the form (7) in describing the lidar return is
the possibility of solving both direct and inverse problems
of laser sensing without invoking complete information
on the scattering phase function at its substitute by a
single parameter determined by the effective particle
radius. It is a disadvantage of such an approach that we
have a loss of information about the geometric-optics
component of the scattering phase function. In Section 3,
the effect of these factors is studied numerically in
model calculations. Further analysis is aimed at a more
correct account for the geometric-optics component in
the lidar equation while meeting all the requirements to
the a priori information on the scattering phase function.
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2. Separating the diffraction and
geometric-optics components
of the lidar equation

As has already been noted, the use of the extra term
m(z) in the asymptotic approximation (7) in describing
the lidar return at multiple scattering is efficient with
the allowance for only the diffraction component of the
scattering phase function. This gives grounds for
separating the component PP)(z) from the lidar return
P(2) [Eq. (1)]. This component describes the lidar return
in the case that the scattering phase function is considered
in purely diffraction approximation. The equation for
the component PM)(z) can be presented in the form
similar to Eq. (5), if the function m(z) is replaced with
the function mM™)(z), which is determined in the
diffraction approximation from the general equations (3),

(6), and (7) at substitution of o) (z), FD)()), and

AD) =1 /2 in place of o(z), #(.), and A. In this case,
the equation for an asymptotic approximation of

mMD)(2) takes the following form:

n() = @ = 1) - @ AG). (12)

Thus, we have obtained all equations needed to find
the diffraction component P(D)(2) of the lidar return.

Let us turn to analysis of the residual term
8 = P(z) — PD)(2). By analogy with Eq. (5), it can be
written as

5P =P (2)[m(2)-mD ()], (13)

where the difference  om(z)=m(z)-m™ (2) s

determined as

dm(z)=zy, I]1 (vzy,) exp[g(D) (v)]{exp[g(GO) (v)]— 1}dv.
0
(14)

In the integrand in Eq. (14), the functions under
the exponent sign have the form similar to Eq. (3):

z
g(p)(v)=2jc(f))(z—s)i(l))(vs)ds, p={D,GO}. (15)
0
At a relatively small receiver’s field of view y,, the
decisive contribution to the formation of multiple-
scattering signal is due to the component m()(z, y,)
achieving saturation with the increasing vy,. Therefore,
it should be expected that the leading role will then be
played by the extra term dm(z, y,) [Eq. (14)]. As can be
seen from Egs. (14) and (15), the extra term &m(z, y,)
depends on both components of the scattering phase
function: the diffraction and the geometric-optics ones.
However, it is clear from the physical reasoning that in
the periphery of the angular reception pattern, where
dm(z, y,) is most significant, the role of the component
x£(GO)(y) increases, while that of the component x(P)(y)
decreases.
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Let us transform equation (14) for dm(z, y,) to avoid
the necessity of using the information on the diffraction
component of the scattering phase function to the greater
extent than it is presented in the asymptotic description
of m(M™)(z,y,) [Eq. (12)]. Recall that the asymptotic
dependence of m(P(z,y,) on the scattering phase
function in the diffraction approximation x()(y) and,
consequently, on the disperse composition of the medium
reduces to the dependence on the effective particle
radius R, and the scattering phase function in the
geometric-optics  approximation x(GO)(y) is  fully
independent on the disperse composition of the medium.

The possibility of making this transformation
becomes apparent, if we take into account that the
monotonically decreasing functions exp[g®(v)] and
exp[g(CO)(v)] have significantly different widths3
because of the different widths of the diffraction peak
of the scattering phase function and its geometric-optics
part. It is just the width of the function exp[g(P)(v)]
that far exceeds the width of the function
(exp[g(COX(v)] — 1). In the frequency range, where the
second factor (exp[g(GO(v)] — 1) in Eq. (14) changes
most significantly, the first factor exp[¢‘P’(v)] changes
insignificantly. Therefore, we can expand the factor
exp[g(P(v)] into the Taylor series and restrict our
consideration to the first approximation

‘3XP[9(D)(V)]zet 1+V[§(D)(O)]'J‘SS(2—S)ds . (16)
0

As a result of substitution of Eq. (16) into Eq. (14)
based on Eq. (11), the function &m(z, y,), as well as

the function m(P)(z, y,), are already dependent only on

the derivative [¥)(0)]' and, consequently, on the
effective radius Rgg, rather than on the diffraction
component of the scattering phase function x(P)(y).

The results of model calculations presented in
Section 3 show that the linear term in Eq. (16), along
with the diffraction component of the scattering phase
function x(P)(y), play so insignificant role in the
formation of the function &m(z, y,) that we can ignore
them without any essential loss in the accuracy and

assume that ¥P)(vs) ~ ¥P)(0) =1 in calculations of
the function dm(z, y,). This is equivalent to replacement
of the diffraction component of the scattering phase
function x(P)(y) by the &-function. This approximation
is used rather widely in solving the RTE (see, for
example, the transport approximation®). At such a
replacement, the extra term dm(z, y,) becomes completely
independent on the disperse composition of the medium
and takes very simple form

ém(z, ) = e* m(GO(z, y,), 7

where the function m(GO)(z, y,) can be determined by
analogy with the function m(®)(z, y,). As a result, the

extra term Sm(z, v.) [Eq. (17)] is the function
m(GOX(z, v,) “extended” by e* times.



V.V. Veretennikov

With the allowance for the above-said, the final
form of the lidar equation can be presented in the
form (5) with the replacement of the function m(z, y,)
by the asymptotic equation of the following form:

m(z, v,) = mMP(z, y,) + e mGO(z, v).  (18)

Note. Equation (17) for the extra term gm(z, ¥.) can
be also obtained in other way through application of the
method of component-wise expansion of RTE.Y Consider
the stationary RTE in the medium without sources

DI=LI (19)

for the intensity I with the differential transfer operator
D=nV+g and the collision integral

Lli=c le(y)dn'. (20)
4n

According to the representation of the scattering
phase function x(y) in the form of the sum (9), the
operator L can be presented as L = L) + L(GO) where
the components L) and L(GO) are determined by
analogy with Eq. (20). Let then Iy be standing for the
RTE solution

DI =L, (21)

in the medium with the scattering phase function x(P)(y)
and the scattering coefficient ¢(P). Then the intensity
difference 81 = I — I satisfies the equation

DI =L +B, (22)

which differs from Eq. (19) by the source function
B = L(GO)] in the right-hand side.

Considering a fictitious medium with the doubled
scattering 2c and extinction 2g coefficients, from solution
of Eq. (21) in the small-angle approximation we can
obtain the equation for OTF F(v) similar to F(v) (2):

Fy(v)=exp|-21(2)+ ¢ (v)]. (23)

The intensity difference 8/ determined from solution
of Eq. (22) corresponds to the function difference

dF(v)=F(v)-F;(v). (24)

The width of the diffraction part of the scattering
phase function () (y) is far less than that of the function
8I depending on the full scattering phase function.
Therefore, the scattering phase function x(P)(y) can be
approximated by 8-function without significant loss in
accuracy when solving Eq. (22). This leads to the following
approximate equation for the function difference:

. (GO)(y
SF(v) = @ [0 ™ 4. (25)

Taking into account the general equation (6), we
can easily notice that the function gF(v) [Eq. (25)]

corresponds to the term gm(z, y.) in the form (17).
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3. Results of model calculations

The efficiency of the proposed description of the
lidar returns in the case of sensing dense coarse disperse
media is illustrated by the calculated data on the
characteristic m(y,) presented below. As a model of the
medium, we took a plane homogeneous layer, whose
microstructure was specified by the generalized gamma-
distribution ~ with the effective particle radius
Retf=10 um. The depth of penetration into the layer
spaced by 1 km was also 1 km. In the results presented,
the scattering phase function was chosen according to
the model (9) and (10) at the wavelength A = 0.55 um.
Figures 1-3 illustrate the situation with the layer having
optical depth t =1, and Figs. 4 and 5 are for a denser
layer with © = 3.

2r m(y)

1.5k

0.5F .

! 5 10 15 v, mrad

—0.5F

-1L
Fig. 1. Angular dependence of m(y,) taking into account (1)
and neglecting (2) the geometric-optics part of the scattering
phase function at the depth of 1 km inside a homogeneous
layer with the optical depth t =1 spaced by 1 km from the

[
I
i
[
'
1

lidar. Asymptotic approximation of m®(y,) (curve 3).

2r m(Yr)
2
1.5F
4\
1k
0.5}F 3
1
0 1 1 s 1 L 1 L ]
5 10 15 Y, , mrad

Fig. 2. Asymptotic approximation of m(y,) with regard for the
geometric-optics part of the scattering phase function: exact
dependence m(y;) (curve 1), asymptotic approximation
mD(y,) (2), dm(y,) (3), approximation of m(y,) by Eq. (18)
(4). Observation conditions are the same as in Fig. 1.

Curves 7 and 2 in Figs. 1 and 3 describe the behavior
of m(y,) for the full scattering phase function x(y,)
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[Eq. (9)] and its diffraction part, respectively. Within
v, <15 mrad, the difference between m(y,) and mMP(y,)
does not exceed 15%. As the receiver’s field of view y,
increases these curves differ more widely, and at y, - o
they asymptotically tend to their limits: m, =5.55 and
meD) =1.72. Curve 3 in Fig. 1 shows the behavior of the
asymptotic function 7(P)(y,). The error in approximation
of the diffraction component m(P)(y,) with the function
mM)(y,) decreases monotonically with the increase of
Yr, and already at y, > 3.4 mrad it does not exceed 15%,
while the error in approximation of m(y,) has a minimum
of 4% in the vicinity of y, = 5.5 mrad.

[ m(y)
5 L
il
f

3r 3
2r 2
1

1 1 1 1 L 1 L ]
0 100 200 300 Yr > mrad

Fig. 3. Ratio m(y,) (f) and its components m®™(y,) (2),
ém(yr) (3) at the layer optical depth t =1 for large v,.

Figure 2 illustrates the efficiency of the proposed
method of component separation in description of the
ratio m(y,). The exact dependence is m(y,) shown by
curve 7, and curve 4 describes the approximate

dependence m(y,) [Eq. (18)] formed by the sum of the
diffraction component m(P)(y,) in the asymptotic form

(curve 2) and 8m(yr) in the form (17) (curve 3). As can
be seen from the comparison of the curves in Figs. 1
and 2, the domain of applicability of the approximation

ﬁz(yr) [Eq. (18)] for m(y,) is at least no smaller than the

region, in which the asymptotic function m()(y,)
satisfactorily ~describes the diffraction component
mD(y,).

Figure 3 illustrates the behavior of the functions
m(y,), mP(y,), and the extra term &m(y,) at a very
large receiver’s field of view y,. We can distinguish two
sections with different slope on the m(y,) curve. The
initial section with the steep slope at y, < 11-13 mrad is
largely formed by the diffraction component m(P)(y,)
(curve 2), which first sharply increases in this region
and then saturates. Starting from this point, the
dependence m(y,) becomes more gently sloping and its

slope is determined by the second term 8m(yr) (curve 3).
Nevertheless, the diffraction component m(y,)
continues to contribute largely to the total dependence

V.V. Veretennikov

m(y,) at y.<92mrad. The extra term gm(y,) in this
region increases almost linearly and at y, > 92 mrad it
becomes dominant, smoothly approaching saturation.

Let us then discuss the main tendencies observed in
the behavior of m(y,) with the increasing optical depth
of the layer. Figures 4 and 5 show the dependence m(y,)
for the optical depth t = 3.

400 m(y,)
5
L 1
30|
4
20
2
10k Yl
73
/
r ’
’
1 21 1 1 1 1 1 1 1 1 1 1 1 1 1
0 fr5 10 15 20 25 30 35 y,, mrad

Fig. 4. Asymptotic approximation of m(y,) with regard for the
geometric-optics part of the scattering phase function for the
layer with the optical depth t= 3: exact dependence m(y,) (1),
diffraction component m®)(y,) (2), asymptotic approximation

MmO (y,) (3), extra term 8m(yr) (4), approximation of m(y,)
by Eq. (18) (5).

The fact is to be noted first that the transition from
t=1to 1 = 3 is accompanied by a significant increase in
the level of m(y,) saturation. The diffraction component
increases more than tenfold and tends to the limit
mSCD) =19.09 (see Figs.4 and 5, curve 2). Additional
allowance for the geometric-optics component in the
scattering phase function leads to an even more
significant growth of the asymptotic limit of m(y,),
which increases from m, = 5.55 at t =1 to m, = 280.5
at t=3 (Fig. 5, curve 7). That significant increase of

m(y,) at large y, is mostly due to the extra term gm(yr)
(Fig. 5, curve 3).

As the optical depth increases, the region of y,, in
which the diffraction component m(D)(y,) prevails,
becomes narrower. The boundary of this region is
determined in Fig. 4 by the point of intersection of the
curves 2 and 4, at which y,=27.5mrad. The upper
boundary of the y, region, in which the diffraction
approximation is applicable to description of the function
m(y,), shifts to the left in a similar way. The acceptable
error of this approximation in the considered case is less
than 15% for y, < 4.6 mrad.

To the contrary, the upper boundary of the y, region,
in which the asymptotic approximation m(P)(y,) is
applicable to description of the diffraction component
m™)(y,) (see Fig.4, curve 3) with the error within
15%, shifts to the right up to y, = 7.7 mrad. It follows
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from the above estimates that at t = 3, unlike the case
of T=1, the asymptotic approximation m()(y,) does
not provide for the 15% error in approximation of the
total ratio m(y,) at any receiver’s field of view y,. The

estimates show that the minimum possible error in this
case is 28%.

250 - m(Y,)

200

150

100

S0
2

0 100 200 300 ¥,, mrad

Fig. 5. Ratio m(y,) (1) and its components m™(y,) (2) and

8m(vr) (3) at the layer optical depth t=3 for large 7y,
asymptotic approximation of m(y,) (4).

The situation changes in the case that the term
gm(yr) is taken into account in addition to the diffraction
component (see Fig. 4, curve 4). Curve 5 in Fig. 4
describes the behavior of the total estimate m(y,). As can

be seen from Fig. 4, the estimate m(y,) gives good results
even at the receiver’s field of view somewhat smaller than
that, at which the approximation m(P)(y,) is applicable
to description of the diffraction component mM™>(y,). In
the region of the receiver’s field of view, at which the
diffraction component m(P)(y,) achieves saturation

(y, > 20 mrad), the behavior of m(y,) is determined by the
term gm(yr) shifted by the constant m (see Fig. 5).
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Conclusion

The structure of the lidar equation has been
considered taking into account multiple scattering in
the small-angle approximation. The role of the diffraction
and the geometric-optics components of the scattering
phase function has been studied depending on the
receiver’s field of view. The method has been proposed
for separation of the diffraction and geometric-optics
components in the lidar return. The advantage of this
approach is the possibility of making analysis of the lidar
return components separately. In particular, it has been
shown that at a large receiver’s field of view the
asymptotic approximation can be used for description of
the diffraction component of the lidar return. This allows
the information about the diffraction component of the
scattering phase function to be replaced by the value of
the effective particle radius, keeping the information
about the geometric-optics part unchanged. The
description proposed may be useful in the development
of methods and algorithms for solution of inverse
problems in laser sensing of optically dense media.
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