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Optical turbulence modes in a nonlinear optical system
with time-delayed distributed feedback
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The chaotic dynamics of light fields formed by a distributed nonlinear optical system with time-
delayed feedback and diffraction is studied numerically. In a certain range of system parameters, these fields
are found to have isotropic spectra of spatial fluctuations decreasing smoothly with the increasing spatial
frequency. The possibility of using these systems as generators of artificial optical turbulence is discussed.

Introduction

The chaotic dynamics of distributed optical systems
with the third-order nonlinearity and a feedback has
been the subject of intense investigations in recent
years.1=7 Already in the first papers devoted to this
subject, it was assumed that such systems could be used
to model the so-called optical turbulence under
laboratory conditions.!:2 These assumptions were based
on the fact that optical radiation formed by such a system
under certain conditions has statistical characteristics
similar to the analogous characteristics of radiation
having passed through a natural turbulent medium, for
example, the atmosphere.

The control over stochastic dynamics of such systems
opens up the possibility of changing characteristics of
spatial fluctuations of the field. In a particular case, it
may be control over the scale of inhomogeneities and,
in a more general case, variation of the whole profile of
the spectral power density (SPD) of fluctuations. Such
a control seems to be rather difficult in field experiments
on radiation propagation in natural randomly
inhomogeneous media. Thus, the study of statistical
properties of chaotic modes in the considered systems is
of a significant practical interest.

Experimental studies of the chaotic behavior
of systems with field transformation in the feedback
loop started in mid-90s. Different types of field
transformation were studied: turn,2° diffraction,3 as
well as their combination.4 A distinctive feature of all
these systems is that the transition to chaotic modes at
the increasing intensity of the input radiation can be
characterized as stochastization of regular structures:
reverberators in a system with turn and hexagonal
structures in a system with diffraction. Therefore, when
the space-time chaotic behavior is observed in a system,
there are significant field correlations on the spatial scales
corresponding to the scales of these regular structures.
This is a serious disadvantage, if we consider such systems
as potential generators of artificial optical turbulence.

In this connection, particular interest is paid to
systems with the so-called local time instability, an
example of which is the distributed system with a delayed
feedback. In this system, chaotic field fluctuations are not
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caused by non-local spatial relations, as in systems with
geometric field transformations, or by phase-amplitude
Fourier filtering, as in the system with the diffraction,
but by spatially local while temporally non-local nonlinear
interaction, which does not lead to undesirable spatial
correlations of the field.”

It should be noted that the delayed system was, in
fact, the first system, from which the active study of
bistability and chaos in optics started.8 A number of
papers were devoted to the study of transitions from
stationary modes to chaotic ones for a one-dimensional
system with diffraction (see, for example, Ref. 9 and
references therein). The possibility of using delayed
systems as chaos generators for enciphering at optical
information transfer was considered in Ref. 10. However,
as far as we know, no detailed study of statistical
characteristics of chaotic modes was conducted. In our
opinion, this paper could fill this gap. It presents the
results of numerical simulation of a distributed system
with a delayed feedback. The results of this simulation
are used for calculation of statistical characteristics of
chaotic modes in a wide range of control parameters,
and the effect of diffraction on the system dynamics is
studied. The possibility of applying such systems as
generators of optical turbulence is discussed as well.

1. Model

A nonlinear optical system with the Kerr-type
nonlinearity and some field transformation in the feedback
loop is described by the nonlinear diffusion equation for
phase modulation of the light field u(r,t) (Ref. 1):

ou(r, t)
ot

Here 1 is the relaxation time; D is the diffusion
coefficient; K is the parameter of nonlinearity; Agp is
the field amplitude in the feedback loop. This equation
can be used for description of the two best-known classes
of systems with a feedback: a nonlinear ring cavity in
the single-pass approximation® and a system based on
liquid-crystal (LC) transparency.! All the results
presented here can be extended to both of the classes,
however in what follows we believe that the LC system
is a prototype for the considered model (Fig. 1a).

T +ulr, £) = DAu(r, t) + K| App(r, 1% (1)
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Fig. 1. Distributed optical system with a delay line in the
feedback loop; Q is the angular rotation rate of the crystal.
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The equation for the field amplitude Apg should
be written with the allowance for a particular form of
the transformation in the feedback loop; in our case, it
is delay and diffraction. For relatively slow LC systems
with the relaxation time t ~ 1072-1073 s, the delay of
the optical signal can be introduced artificially, for
example, using a specialized photorefractive delay line, !!
which is shown schematically in Fig. 1b. In accordance
with this scheme, two laser beams enable recording a
holographic array in a photorefractive crystal. As a result
of crystal rotation around the propagation axis of the
reference beam, the information about the signal recorded
in the previous time arises in the output diffraction
cone. To avoid spatial overlap of 2D signals, discrete
rotation of the crystal is needed.

However, if time resolution in the delay line At is
much smaller than the relaxation time of the LC
transparency 1, then mathematical description of the
delay line with continuous time is suitable. For the delay
time 7 and relaxation time t such that T/t ~ 5 (this
ratio makes possible the appearance of chaotic modes in
a wide range of parameters), as well as for the total number
of stored holograms M ~ 100, we have 1t /At ~ 20. Since
the time of hologram re-recording is much shorter than
the relaxation time of the LC transparency, the
approximation of continuous time is quite justified.

Taking into account the delay and diffraction in the
feedback loop, in the approximation of a plane input
wave we have’:

e 2N ) _
App(r, ) =Ag F 1[6 i(Ritky)Zg F(1 + yezu(r,t T)Jr\uo)]7 (2)

where A is the amplitude of the input field; T is the
delay time; Z is the diffraction parameter (proportional
to the diffraction length); y and g are the parameters
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describing the ratio of interference contributions of the
reference signal and the signal reflected from the LC

transparency!; F and F! are the direct and inverse
Fourier transform operators. The approximation of the
plane input wave is valid in most cases, when the spatial
scale of field inhomogeneities [ (structure scale or
correlation length for random fields) is much smaller than
the beam aperture Y. Periodic boundary conditions that
are also applicable in the case of [ <<a were used for
Eq. (1). The initial conditions for phase modulation were
chosen in the form wu(r, t = 0) = ug + £(r), where uq is
some constant; E&(r) describes small noise fluctuations.
There are no general analytical methods for solving
Egs. (1)—(2) under these boundary conditions at
arbitrary values of the control parameters K, D, vy, vy,
T, and 1. Nevertheless, passing to a spatially discrete
model, we can draw some principle conclusions about the
system dynamics. Assume, first, that there is no
diffraction (Zy = 0). Replace the function u(r, t) with
its grid approximation — a set of N? values of
uif(t) = u(iAx, jAy, t). In this case, in place of the
equation for phase modulation in the distributed
medium (1), we obtain the system of coupled ordinary
differential equations for the functions u;;(¢):

aui]‘(t)
ot

T + ui]-(t) =

= K {1 +y cos[uj(t = T) + yol} + Aju(®),  (3)
where K = K|A4y1% Ajju(t) is the linear combination of
phase values at neighboring spatial points, whose form

depends on the grid approximation of the Laplace
operator A. Thus, as a result of grid approximation, the

distributed medium is replaced by a set of N? diffusion-
coupled nonlinear oscillators. In the absence of spatial
correlations (D = 0), we obtain the equation describing
the dynamics of an individual oscillator!:

224D ) = K {1+ coslult = ) + ol ()

Temporal nonlocality in Eq. (4) does not allow
analytical study of the system dynamics at an arbitrary
set of parameters. Therefore, following the method
proposed in Ref. 8, consider the approximation of the
immediate response (t — 0). Then, passing on to a
discrete time t, =nT (n € Z) we obtain in place of
Eq. (4) with continuous time

= K1+ y cos[u + woD), )

where u” = u(t,). This equation describes the transition
to chaos through period doubling bifurcations at the
increasing control parameter K (intensity of input
radiation). Such a dynamics of light beams in a ring
cavity was studied thoroughly in the 80s.8:12

Thus, a distributed system can be approximately
considered as a set of diffusion-coupled chaotic oscillators
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located at the nodes of a 2D grid. For simplicity, assume
first that there are no spatial connections between
oscillators. Then different zones of the nonlinear medium
capable of evolving chaotically remain spatially
independent. Since chaos is exponentially unstable
motion, infinitely small initial spatial fluctuations are
sufficient for the light field to take the spatially chaotic
form with time. It is clear that, in the presence of such
spatial interactions as diffusion in an actual system,
competition arises between two opposite processes,
namely, diffusion “smoothing” of spatial inhomogeneities,
on the one hand, and their development due to temporal
chaos, on the other hand. If in the absence of diffusion
the light field in the chaotic mode becomes spatially
delta-correlated with time, then in the case of relatively
weak diffusion in the system one should expect the
appearance of spatiotemporal chaotic modes with nonzero
spatial correlation length. In this case, it is rather
natural to assume that phase correlations at two spatial
points decrease monotonically as the distance between
the points increases, and the SPD of spatial fluctuations
has a monotonically decreasing character.

Consider now the contribution of diffraction
(Zy#0). In this case, analytical consideration is even
more complicated, therefore let us restrict ourselves to
the limiting case of a system with a short delay T — 0.
As known, diffraction in this case leads to selectivity of
the spatial Fourier components of the light field
amplitude, due to which both regular and chaotic spatial
irregularities can arise in the system.!3 In our case, the
equation for linear Lyapunov indices of the spectral phase
components u(r, t) = u(t) + Y a(t) ™" has the form14

k=0

Mo=—1- DK+
+ 2K [sin k2Zy + v sin(k2Zy + o — ). (6)

In the stationary mode, the aperture mean phase u
is some constant, and according to Eq. (6) the spectral
space can be divided into excitation zones, for which
Ak > 0. Because of the periodic character of the
harmonic function, these zones look like concentric
rings. The competitive dynamics at low diffusion and
relatively small values of the parameter K ~ 1 leads to
the formation of structures, and at K >>1 chaotic
modes are observed, in which the SPD of spatial phase
fluctuations has a nonmonotonic character like damped
oscillations.3 These oscillations are determined just by
the presence of concentric excitation zones: the
amplitudes of spectral components of fluctuations in
excitation zones are far higher than the amplitudes of
other components.

Thus, based on this consideration, we can draw the
following conclusions about the statistical properties of
chaotic modes:

1) at small values of the diffraction parameter Z,
chaotic modes with the monotonically decreasing SPD
of spatial fluctuations can arise in the system;
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2) as the parameter Z; increases, the effect of
diffraction on the system dynamics can lead to
appearance of such modes, in which the SPD has a
nonmonotonic form.

These conclusions were checked through direct
numerical simulation. Calculations were conducted both
in the immediate response approximation and with the
allowance for relaxation. In the immediate response
approximation, Eq. (1) was replaced with the grid analog

£, ) = DAdG, ) + Kl Apg |2, (7

or

ntl _
ul] =

) 1;1(?{1~<|A0 12| 1 [Ij.(yei[u;}ﬂw)] D e—i(f? +f?)zo]}j
- 1+ 4D + D) ’

(8)

where 7n is the number of the time step.

2. Analysis of statistical characteristics

Figure 2 shows examples of random phase
distributions obtained in the chaotic modes for the
system without diffraction. It can easily be seen that the
characteristic spatial scale of fluctuations (correlation
length 7.o), as could be expected, increases with the
increasing diffusion coefficient. Thus, one could expect
that the SPD of phase fluctuations is monotonically
decreasing and the SPD width Af ~ n/7., decreases
with the increasing diffusion coefficient D.

The spatial SPD of phase fluctuations G(f) averaged
over large number of realizations and over the azimuth
angle is shown in Fig. 3a. The obtained dependences
G(f) actually have the monotonic form and are well

approximated by the Gaussian functions G**P(f) = APl
[16(h =61 df

with the approximation error y = ~

[ par

~107%. Such a behavior of the SPD of phase fluctuations
agrees with the results obtained for grid logistic maps
in the mode of developed spatiotemporal chaos.!5

The SPD width actually decreases with the
increasing diffusion coefficient. The coefficient B
determining the width of the functions G,,,(f) has the

dimensionality of L?. Thus, the dependence B(D) should
be linear, that can easily be seen in Fig. 3b. This result
has a simple physical interpretation: the characteristic
scale of spatial inhomogeneities (correlation length)
increases with the increasing strength of spatial

connections (diffusion coefficient) as 7qqp ~ \/[_) Similar
linear dependence of the parameters B ~ D was also
obtained for chaotic modes in related LC systems with
periodic excitation.®
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Fig. 2. Spatial phase distributions in chaotic modes (immediate response approximation): K =2.65, y=1, yy=0, Zy=0,

D=4-10"(a, b), 1-1074 (¢), 2 - 1074 (d).
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Fig. 3. Spectral characteristics of chaotic modes in the immediate response approximation at K =2.65, Zy=10, y=1, yo=0:
averaged SPD of spatial fluctuations (@) and scale relations: dependence of the approximation parameter B on the diffusion

coefficient D (b).
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The results of numerical studies of the system with
the allowance for relaxation (Fig. 4) roughly correspond
to the results obtained in the immediate response
approximation. Chaotic modes are characterized by
oscillating temporal autocorrelation functions of phase
fluctuations (Fig. 4a) with the oscillation period
Tosc ®# 2T. The SPD of fluctuations also has the
decreasing character, but it is better approximated by

the functions like G,,,(f) =A4/(1 + Bf*)* (Fig. 4b).
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Fig. 4. Statistics of phase fluctuations (K =3.65, T /1= 6,
Zy=0, y=1, yo=0): temporal correlation functions averaged
over several spatial points (@), SPD (b).

Consider the effect of diffraction on the system
dynamics. In accordance with the above assumptions,
we have found two different types of chaotic modes in
the system. These two modes differ by the shape of the
SPD of fluctuations: monotonically decreasing for the
first mode and oscillating for the second mode (Fig. 5).
The transition from the first mode to the second one at
a fixed value of the diffusion coefficient occurs as the
parameter Z, increases, that is, the contribution of
diffraction to the system dynamics increases. Figure 6a
depicts a separatrix of these modes in the region of
small values of the parameters on the plane D — Z; the
zone 1 corresponds to the first mode, and the zone 2 —
to the second one. It can be easily seen that the
separatrix is linear. This can be easily explained using
Eq. (2) with the allowance for small value of the
parameter Zy. Actually, because of small exponent in
this case, the field amplitude Arp depends linearly on
Z,, and, consequently, both the diffusion and diffraction
coefficients are present in the main equation (1) in the
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same (linear) form, and just that explains the linear
character of the separatrix.
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Fig. 5. SPD of phase fluctuations at different values of the

diffraction parameter (K = 2.75).
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Fig. 6. Separatrix of chaotic modes in the plane of
diffraction—diffusion parameters (K =2.75) in the region of
small values of the diffraction and diffusion parameters (a)
and in a wider range of parameter variability (b).
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For large values of the diffraction coefficient, the
dependence Apg(Zy) has rather nontrivial form, and
points separating the modes form singular areas in the
plane D - Z, (Fig. 6b). The SPD is nonmonotonic
inside these areas and monotonic beyond them. It can
be easily seen that at some fixed small value of the
diffusion parameter these areas alternate successively at
the increase of the diffraction parameter Z;. Such a
behavior is determined by the dependence Apg(Zy) at
large values of Zj,.

Conclusion

As was already mentioned in the Introduction, the
interest to studies of statistical properties of chaotic
modes in distributed systems with a feedback is caused
by the potential possibility of applying such systems to
laboratory modeling of optical turbulence. Analysis
showed that a delayed system may have modes, in which
modulation of the refractive index of the LC transparency
is chaotic in space and time, and the SPD of spatial
fluctuations has a monotonic decreasing character. It
should be noted that the LC transparency in this system
can be considered as a phase screen for the reflected
light, and the character of fluctuations of the refractive
index of this screen corresponds to the common
properties of fluctuations of the refractive index of a
thin layer of randomly inhomogeneous medium.

It is interesting to follow some analogy between
the optical modeling of phase screens used here and
numerical simulation of phase screens that is widely
used in computer physics.!6 Remind that computer
generation of two-dimensional random fields by spectral
methods at a 2D spatial grid first assumes specification
of some delta-correlated noise. Then the field with the
specified profile of the spectrum of spatial fluctuations
is generated from this noise through Fourier filtering.

Computer realizations of two-dimensional fields
obtained in such a way have, on the one hand, a random
character and, on the other hand, needed statistical
properties. In the discrete model of a delayed optical
system with low diffraction, we have a system of
coupled chaotic oscillators, in which the delay leads to
formation of random, in space and time, inhomogeneities
(analog of a random number generator in the Monte
Carlo method), and spatial connections perform
additional filtering of fluctuations. In this case, the
amplitude Fourier filter in the feedback loop can
successfully play the role of a filter in an optical system.
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Thus, such an analog mechanism of generation of
phase screens reminds of the numerical one. Regardless
that this analogy is rather conditional, it well
illustrates the advantage of systems with local time
instability as potential generators of the controlled
optical turbulence in comparison with the known
systems, in which the transition to chaotic modes occurs
through stochastization of regular structures.
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